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Preface 

The subject of this monograph is a proposal called "Hop Integrity" 
intended to strengthen the security of the Internet against denial-of-service 
attacks. 

Hop integrity provides three important guarantees whenever a message m 
makes one "hop" from a computer p to an adjacent computer q in the 
Internet. (Note that each of the two computers p and q can be a host or a 
router.) First, computer p does not send m (to q) unless it is certain that until 
recently q was up and running. Second, if both p and q are routers, then upon 
receiving message m, router q can check m and correctly conclude that m is 
"fresh" and has been sent recently by router p. In this case, q accepts m and 
proceeds to process it further. Third, if both p and q are routers and there is 
an adversary that modifies m into m' or replaces m with an earlier message 
m', then upon receiving message m', router q can check m' and conclude 
correctly that m' is "modified" or "replayed". In this case, q discards m'. 

The three guarantees of hop integrity constitute a defense against denial- 
of-service attacks as follows. If a message my that is part of a denial-of- 
service attack, is originated by an adversarial host in the Internet and if the 
message header includes a wrong address for the originating host of m (in 
order to hide the true source of the attack), then message m will be classified 
as modified or replayed and will be discarded by the first router that receives 
m in the Internet. 

To provide (the three guarantees of) hop integrity, the address resolution 
protocol of the Ethernet needs to be secured. Also, the IP header of each 
message in the Internet needs to have a "message digest" and a "sequence 
number". (The digest of a message is used by the receiving router to detect 
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whether or not the message is modified, and the sequence number of a 
message is used by the receiving router to detect whether or not the message 
is replayed. If a router receives a message and detects that the message is 
neither modified nor replayed, the router concludes correctly that the 
message is fresh.) 

Also to provide hop integrity, each pair of adjacent routers p and q in the 
Internet need to share two security keys K and L. Router p uses key K to 
compute the digest of each message that p sends to q and uses key L to 
validate the digest of each message that p receives from q. Similarly, router 
q uses key L to compute the digest of each message that q sends to p and 
uses key K to validate the digest of each message that q receives from p. To 
enhance the security of their shared keys, each pair of adjacent routers need 
to update their shared keys regularly and relatively frequently, and so they 
use a light-weight key update protocol to update their shared keys. 

In this monograph, a suite of protocols for providing hop integrity in the 
Internet is discussed in great detail. In particular, each protocol in this suite 
is specified and verified using an abstract and formal notation, called the 
Secure Protocol Notation. This notation is a variation of the Abstract 
Protocol Notation in the textbook "Elements of Network Protocol Design", 
written by the second author, Mohamed G. Gouda. 

This monograph is primarily directed towards designers, reviewers, 
verifiers, and implementers of secure network protocols. It is also directed 
towards graduate students who are interested in network security and secure 
protocols. 

Finally, the authors wish to thank their friends and colleagues in the 
Department of Computer Science and Engineering at the University of South 
Carolina at Columbia and in the Department of Computer Sciences at the 
University of Texas at Austin. The encouragement of our colleagues made 
this monograph possible. 
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Chapter 1 

INTRODUCTION 

A network consists of computers connected to subnetworks. Examples of 
subnetworks include local area networks, telephone lines, and satellite links. 
The computers in a network are classified into hosts and routers. It is 
assumed that each host in a network is connected to one subnetwork, and 
each router is connected to two or more subnetworks via distinct interfaces. 

Two computers in a network are called adjacent if both computers are 
connected to the same subnetwork. Two adjacent computers in a network 
can exchange messages over the common subnetwork(s) to which they are 
both connected. Two computers that are not adjacent to each other in a 
network can exchange messages through the help of intermediate routers as 
follows. Assume a message m is to be transmitted from a computer s to a 
faraway computer d in the same network. First, message m is forwarded in 
one hop from computer s to a router r.1 adjacent to s. Second, message m is 
forwarded in one hop from router r. 1 to router r.2 adjacent to r. 1, and so on. 
Finally, message m is forwarded in one hop from a router r.n that is adjacent 
to computer d to computer d. 

Today, most computer networks in the Internet suffer from the following 
security problem. In a typical network, an adversary, that has an access to 
the network, can insert new messages, modify current messages, or replay 
old messages in the network. In many cases, the inserted, modified, or 
replayed messages can go undetected for some time until they cause severe 
damage to the network. More importantly, the physical location in the 
network where the adversary inserts new messages, modifies current 
messages, or replays old messages may never be determined. 

One type of such malicious attacks is called denial-of-service attack [5], 
which manages to exhaust the communicating resources of a network or the 
computing resources of a host in order to largely reduce or completely deny 
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normal services provided by a network or a host. Two well-known examples 
of denial-of-service attacks in networks that support the Internet Protocol (or 
IP, for short) and the Transmission Control Protocol (or TCP, for short) are 
as follows. 

I. Smurf Attack: 
In an IP network, any computer can send a "ping" message to any other 

computer which replies by sending back a "pong" message to the first 
computer as required by Internet Control Message Protocol (or ICMP, for 
short) [43]. The ultimate destination in the pong message is the same as the 
original source in the ping message. An adversary can utilize these messages 
to attack a computer d in such a network as follows. First, the adversary 
inserts into the network a ping message whose original source is computer d 
and whose ultimate destination is a multicast address for every computer in 
the network. Second, a copy of the inserted ping message is sent to every 
computer in the network. Third, every computer in the network replies to its 
ping message by sending a pong message to computer d. Thus, computer d is 
flooded by pong messages that it had not requested. 

11. SYN Attack: 
To establish a TCP connection between two computers c and d, one of 

the two computers c sends a " S Y N  message to the other computer d. When 
d receives the SYN message, it reserves some of its resources for the 
expected connection and sends a "SYN-ACK message to c. When c 
receives the SYN-ACK message, it replies by sending back an "ACK" 
message to d. If d receives the ACK message, the connection is fully 
established and the two computers can start exchanging their data messages 
over the established connection. On the other hand, if d does not receive the 
ACK message for a specified time period of T seconds after it has sent the 
SYN-ACK message, d discards the partially established connection and 
releases all the resources reserved for that connection. The net effect of this 
scenario is that computer d has lost some of its resources for T seconds. An 
adversary can take advantage of such a scenario to attack computer d as 
follows [5, 511. First, the adversary inserts into the network successive 
waves of SYN messages whose original sources are different (so that these 
messages cannot be easily detected and filtered out from the network) and 
whose ultimate destination is d. Second, d receives the SYN messages, 
reserves its resources for the expected connections, replies by sending SYN- 
ACK messages, then waits for the corresponding ACK messages which will 
never arrive. Third, the net effect of each wave of inserted SYN messages is 
that computer d loses all its resources for T seconds. 
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In these (and other [24]) types of attacks, an adversary inserts into a 
network messages with wrong original sources. These messages are accepted 
and forwarded by unsuspecting routers toward the computer under attack. To 
counter these attacks, each router p in the network should route a received 
message m only after it checks that the original source in m is a computer 
adjacent to p or m is forwarded to p by an adjacent router q. Performing the 
first check is straightforward, whereas performing the second check requires 
special protocols between adjacent routers. Filling in this void is the goal of 
this monograph. 

In this monograph, we present the concept of hop integrity between 
adjacent routers as discussed in [14, 15, 191, and present the three protocols 
in the hop integrity protocol suite that are aimed to counter the 
aforementioned attacks and strengthen the security of the Internet. The basic 
idea of hop integrity is straightforward: whenever a router p receives a 
message m from an adjacent router q, p should be able to determine whether 
m was indeed sent by q or it was modified or replayed by an adversary that 
operates between p and q. 

Next, we discuss the requirements of hop integrity. A network is said to 
provide hop integrity iff the following three conditions hold for every pair of 
adjacent routers p and q in the network. 

I. Detection of Next-Hop Failure: 
Router p does not send any message m to router q over the subnetwork 

connecting p and q unless router q has been up and reachable shortly before 
m is sent. 

11. Detection of Message Modification: 
Whenever router q receives a message m over the subnetwork connecting 

routers p and q, q can determine correctly whether message m was modified 
by an adversary after it was sent by p and before it was received by q. 

111. Detection of Message Replay: 
Whenever router q receives a message m over the subnetwork connecting 

routers p and q, and determines that message m was not modified, then q can 
determine correctly whether message m is another copy of a message that is 
received earlier by q. 

The first condition infers sending integrity, in which a sender does not 
send a message to the receiver of the message unless the sender is sure the 
receiver has been up and reachable shortly before. The second and third 
conditions infer receiving integrity, in which whenever a receiver receives a 
message from a sender, the receiver can verify whether m was indeed sent 
by the sender or it was modified or replayed by an adversary that operates 
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between the receiver and the sender. Note that the sender and the receiver 
referred to in our presentation of hop integrity are one hop away from each 
other, i.e. they are connected to the same subnetwork. 

For a network to provide hop integrity, we propose that the hop integrity 
protocol suite needs to be added to the protocol stack in each router in the 
network. The hop integrity protocol suite consists of the following three 
protocols: 

I .  Secure Address Resolution Protocol: 
Secure address resolution protocol can detect next-hop failure. This 

protocol can be used to counter denial-of-service attacks that involve ARP 
spoofing [45, 521. 

11. Weak Hop Integrity Protocol: 
Weak hop integrity protocol can detect message modification. This 

protocol can be used to overcome denial-of-service attacks that involve 
message modification and do not involve message replay. 

111. Strong Hop Integrity Protocol: 
Strong hop integrity protocol is an enhanced version of weak hop 

integrity protocol in that besides detecting message modification, this 
protocol can also detect message replay. This protocol can be used to 
overcome denial-of-service attacks that involve message modification or 
message replay. 

As discussed in [7] and [46], the protocol stack of each router (or host) in 
a network consists of four protocol layers. They are (from bottom to top): the 
subnetwork layer, the network layer, the transport layer, and the application 
layer. The secure address resolution protocol needs to be added to the 
subnetwork layer of this protocol stack, whereas the weak hop integrity 
protocol and the strong hop integrity protocol need to be added to the 
network layer. 

Note that these proposed protocols are based on the following two 
assumptions: 

I. Local Area Network Assumption: 
The proposed protocols are based on local area networks, in particular 

Ethernets. 

11. Secure Router Assumption: 
The routers in the network and the software used by them are assumed to 

be secure and so they cannot be compromised by any adversary. 
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An adversary who wants to attack the network can compromise any 
group of hosts in the network and can cause them to execute actions on 
behalf of the adversary. However, under the Secure Router Assumption, the 
protocols of our hop integrity protocol suite can detect and defeat the 
adversarial actions. 

It is instructive to compare hop integrity with secure routing [6, 37, 471, 
traceback [3, 48, 491, and IPsec [26]. In secure routing, for example [6], 
[37], and [47], the routing update messages that routers exchange are 
authenticated. This authentication ensures that every routing update 
message, that is modified or replayed, is detected and discarded. By contrast, 
hop integrity ensures that all messages (whether data or routing update 
messages), that are modified or replayed, are detected and discarded. 

The purpose of traceback is for the destination under attack to reconstruct 
the path traversed by the attacking messages, so as to identify the real 
origin(s) of the messages responsible for the attack. Two schemes have been 
proposed to achieve traceback: message marking scheme [3, 491 and hash- 
based scheme [48]. In message marking scheme, when a router r receives a 
message m, it sends the traceback information, namely the pair (r, m), to the 
ultimate destination of the message. The traceback information for a 
message m is either sent in the ID field of IP header of message m itself [49] 
or sent in a separate ICMP message [3]. Due to the overhead incurred by 
sending traceback information, both Bellovin and Savage employ 
probabilistic methods rather than applying their methods to every message. 
In hash-based scheme, when a router r receives a message m, r stores the 
traceback information (r, m) in a hash table for some (relatively short) time. 
In these two schemes, a denial-of-service attack has to proceed for some 
time before the ultimate destination that is under the attack can detect the 
attack sources, if at all, and block them. In other words, these are detection- 
and-resolution schemes. By contrast, hop integrity is a prevention scheme. 
An attacking message, usually with a false source address, will be detected 
and discarded in its first hop. Thus, denial-of-service attacks will be 
prevented before they start. 

The hop integrity protocol suite introduced in this monograph and the 
IPsec protocol suite presented in [26], [27], [28], [38], and [40] are both 
intended to provide security at the network layer. Nevertheless, these two 
protocol suites provide different, and somewhat complementary, services. 
On one hand, the hop integrity protocols are to be executed at all routers in a 
network, and they provide a minimum level of security for all 
communications between adjacent routers in that network. On the other 
hand, the IPsec protocols are to be executed at selected pairs of computers in 
the network, and they provide sophisticated levels of security for the 
communications between these selected computer pairs. Clearly, one can 
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envision networks where the hop integrity protocol suite and the IPsec 
protocol suite are both supported. When operating hand in hand, the hop 
integrity protocol suite can provide router authentication, router-to-router 
message integrity, and determination of the adversary location when the 
network is under attack, whereas the IPsec protocol suite can support source 
authentication, end-to-end message integrity, and confidentiality. 

The rest of this monograph is organized as follows. In Chapter 2, we 
introduce the Abstract Protocol Notation that we use to specify all protocols 
in this monograph. In Chapter 3, we introduce more features of the AP 
notation that can be used to specify secure network protocols. In Chapter 4, 
we define denial-of-service attacks and discuss the role and use of hop 
integrity in countering these attacks. In the next four chapters, we introduce 
the three components of hop integrity protocol suite in order. First, in 
Chapter 5 we present a secure address resolution protocol that can achieve 
detection of next-hop failure. Second, in Chapter 6 we present the weak hop 
integrity protocol that can achieve detection of message modification. Third, 
in Chapters 7 and 8 we present the strong hop integrity protocol that can 
achieve detection of message replay in addition to achieving detection of 
message modification. In Chapter 7, we present the strong hop integrity 
protocol using soft sequence numbers, and in Chapter 8, we present a 
variation of the strong hop integrity protocol using hard sequence numbers. 
In Chapter 9, we discuss implementation considerations of hop integrity. 
Finally in Chapter 10, we illustrate four other applications of hop integrity 
besides overcoming most denial-of-service attacks. 
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ABSTRACT PROTOCOL NOTATION 

It is useful to specify network protocols using a formal notation. First, by 
using a formal notation to specify a network protocol, one can formally 
verify the correctness of this protocol and check that the protocol performs 
the function that it is intended to perform. Second, formal specification and 
verification is particularly important for secure network protocols. To verify 
the security guarantees of a protocol, one cannot depend only on some 
testing of the protocol because the tester may omit cases where 
vulnerabilities or weaknesses occur in the protocol. This is why we decided 
to specify all the secure protocols in this manuscript using a formal notation. 

In this chapter, we present a variation of the Abstract Protocol Notation 
that is introduced in [13]. We use this variation to specify all the protocols 
presented in this manuscript. 

The remainder of this chapter is organized as follows. In Section 2.1, we 
introduce the concept of processes and channels. In Section 2.2, we 
introduce the components of a process, namely constants, variables, and 
actions. In Section 2.3, we introduce the state transition diagram of a 
protocol, which is our tool to verify the correctness of the protocol. In 
Section 2.4, we introduce three more features of the AP notation, namely 
process arrays, parameters, and parameterized actions, that are used in our 
presentation. 

1. PROCESSES AND CHANNELS 

A protocol is defined by a collection of processes, and the channels 
between these processes. Processes in a protocol need to communicate with 
other processes in the same protocol by sending messages to and receiving 
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messages from the other processes. A message has a name (or a type) and 
can have zero or more fields that carry values to be used by the message 
receiver. 

A message is transported from a sending process p to a receiving process 
q via the channel from p to q. The channel from p to q is the place where a 
message stays after it is sent by p and before it is received by q or before it is 
lost. Between each pair of adjacent processes p and q, there are two 
unidirectional channels: one from p to q, and the other from q to p. 

Every channel in a protocol is both unbounded and FIFO (first-in, first- 
out). The unboundedness property means that an unbounded number of 
messages can reside simultaneously in a channel. The FIFO property means 
that messages are received from a channel in the same order in which they 
were sent into the channel. Messages that reside simultaneously in a channel 
form a sequence <m. 1; m.2; . . .; m.k> in accordance with the order in which 
messages m. I ,  m.2, . . ., m.k have been sent by the sending process. The head 
message in the sequence, m. 1, is the earliest sent, and the tail message in the 
sequence, m.k, is the latest sent. When the receiving process is ready to 
receive a message, it removes the head message, namely m.1, from the 
sequence. In this case, and the next message, namely m.2, becomes the next 
head message in the sequence, and so on. Therefore messages are to be 
received in the same order in which they were sent. 

CONSTANTS, VARIABLES, AND ACTIONS 

A process in a protocol is defined by a set of constants, a set of variables, 
and a set of actions. The protocol performs its designated function by 
executing the actions in its processes. In the next section, we explain how 
the actions in a process are executed. In this section, we discuss the 
constants, variables, and actions of a process. 

A constant of a process has a name and a value, and can be one of the 
following four types: boolean, integer, range, and array. The constants of a 
process can be read but not updated by the actions of this process. Thus, the 
value of each constant of a process is either fixed or is updated by another 
process outside the protocol. 

A variable of a process has a name and a value, and can be one of the 
following four types: boolean, integer, range, and array. The variables of a 
process can be read and updated by the actions of this process. 

An action of a process consists of a guard, an arrow "+", and a 
statement: 
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The <guard> of an action is of one of the following two types: a local guard 
or a receiving guard. 

A local guard is a boolean expression that involves the constants and 
variables of the process in which the local guard occurs. 

A receiving guard is of the form: 

rcv <message> from <process name> 

A <statemenP of an action is of one of the following six types: skip, 
assignment, send, selection, iteration, and sequence. Next, we describe the 
six types of statement and how to execute each of them. 

A skip statement is of the form: 

skip 

The skip statement is executed by doing nothing. 
An assignment statement is of the form: 

where v is a variable of the process in which the assignment statement 
occurs, and E is an expression of the same type as v. The assignment 
statement is executed by assigning the current value of E to variable v. 

A send statement is of the form: 

send <message> to <name of another process> 

This statement is executed by sending a message of the specified type to the 
specified process. 

A selection statement is of the form: 

This statement is executed by first computing the current value of each 
<boolean expression>, then arbitrarily selecting one <boolean expression> 
whose value is true and executing its corresponding <statement>. 

An iteration statement is of the form: 

This statement is executed by repeatedly computing the value of the 
<boolean expression> and then executing the <statement> when the value of 
the <boolean expression> is true. Execution of this statement terminates 
when the <boolean expression> becomes false. 
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A sequence statement is of the form: 

This statement is executed by first executing the first <statement> and then 
executing the second <statement>. 

Next, we use an example to illustrate the use of constants, variables, and 
actions. The following protocol consists of two processes p and q. In this 
protocol, process p can send a request message to process q, and then wait 
for a reply message from q before p can send the next request message to q. 
Process p can be specified as follows. 

process p 
var ready : boolean {init. ready=true) 

txt, t : integer 
begin 

ready + 
txt := any; 
send rqst(txt) to q; 
ready := false 

[I rcv rply(t) from q + 
{use text t in received message) 
ready := true 

end 

Process p has three variables: variable ready is used to remember whether 
process p is waiting for a rply message from process q or not, variable txt is 
used for keeping the content of the latest rqst message process p sends to 
process q, and variable t is used for keeping the content of the latest rply 
message process p receives from process q. There are two actions in process 
p. In the first action, if the value of ready is true, then p chooses a new value 
for txt, sends a rqst(txt) message to process q, and sets the value of ready to 
false. In the second action, if p receives a message rply(t) from q, then p sets 
the value of ready to true. 

When process q receives a request message from process p, q returns a 
reply message to p. Process q can be specified as follows. 

process q 
var t : integer 
begin 

rcv rqst(t) from p + 
t := any; 
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send rply(t) to p 
end 

Process q has one variable t, which is used for keeping the content of the 
latest message that process q receives from or sends to process p. There is 
one action in process q: if q receives a rqst(t) message from p, then q 
chooses a new value for t, and returns a rply(t) message to p. 

3. STATE TRANSITION DIAGRAM 

A state of a protocol is defined by one value for each constant and one 
value for each variable in each process in the protocol and by one sequence 
of messages for each channel in the protocol. 

An action in a process p in a protocol is enabled at a state S of the 
protocol iff one of the following two conditions holds at S: the guard of the 
action is a local guard, or the guard is a receiving guard of the form rcv m 
from q and the head message in the channel from process q to process p is m 
at state S. 

If one or more actions in the same process or in different processes in a 
protocol are enabled at a state S, then exactly one of the enabled actions is 
executed, yielding a next state Sf of the protocol. Likewise, if one or more 
actions are enabled at state Sf, then exactly one of the enabled actions is 
executed, yielding a next state S", and so on. An execution of a protocol 
may terminate when the protocol reaches a "deadlock state", where no action 
is enabled. If a protocol never reaches a deadlock state, then an execution of 
this protocol can continue endlessly. 

Executing the actions (of different processes) in a protocol proceeds 
according to the following three rules: 

I. Atomicily: 
The actions in a protocol are executed one at a time. 

11. Nondeterminism: 
An action is executed only when its guard is true. 

111. Fairness: 
An action whose guard is continuously true is eventually executed. 

To construct a state transition diagram of a protocol, we have to derive 
all the possible states that can be reached by the protocol. The derivation of 
reachable states begins with an initial state in which every constant and 
every variable is assigned an initial value and every channel in the network 
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is empty. Then, all the actions that are enabled at this state are identified. 
Execution of each of these enabled actions at the current state leads the 
network to a different next state. This procedure is continued at each of the 
next states until a deadlock state is reached or a previous state is reached. 

After we derive all the reachable states of a protocol, we can draw the 
corresponding state transition diagram. In a state transition diagram, each 
node represents one network state, and each arrow fiom a node S to another 
node S' represents an action execution that leads the network from state S to 
state S'. 

Next, we use the protocol defined in the last section as an example for 
illustrating the construction of a state transition diagram. Assume that this 
network of process p and process q starts at a state defined by the following 
protocol predicate S.O. 

S.0 : ready A txt = x A t.p = y A t.q = z A 

ch.p.q = < > A ch.q.p = < > 

The first conjunct in S.0 asserts that variable ready in process p has the 
value true. The next three conjuncts assert that txt in process p has the value 
x, t in process p has the value y, and t in process q has the value z. The last 
two conjuncts assert that the two channels between processes p and q are 
empty. 

At state S.0, exactly one action, namely the first action in process p, is 
enabled. Executing this action at state S.0 leads the network to the following 
state S. 1. 

At state S.l,  only the sole action in process q is enabled. Assume that 
process q chooses a random value z' for its variable t when executing this 
action at state S.1. Thus the network is led to the following state S.2. 

At state S.2, only the second action in process p is enabled. Executing 
this action at S.2 leads the network to the following state S.3. 

S.3 : ready A txt = x A t.p = z' A t.q = z' A 

ch.p.q = < > A ch.q.p = < > 

At state S.3, only the first action in process p is enabled. Assume that 
process p chooses a random value x' for its variable txt when executing this 
action at state S.3. Thus the network is led to the following state S.4. 

S.4 : -ready A txt = x' A t.p = z' A t.q = z' A 
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It turns out that this protocol has an infinite number of reachable states, 
because in each round process p chooses a new value for its variable txt 
before sending a message rqst(txt) to process q, and process q chooses a new 
value for its variable t before sending a message rply(t) to process p. 
Therefore, it is impossible to draw the corresponding state transition diagram 
in full. 

To solve this problem, the definition of a state transition diagram for a 
protocol can be generalized as follows. Instead of each node in the diagram 
representing only one state of the protocol, some nodes in the diagram can 
be aggregated under a broader protocol predicate into one node that 
represents a nonempty subset of the protocol states. 

For example, the initial state S.0 of this protocol can be found in an 
aggregated state that is defined by the following protocol predicate T.O. 

T.0 : ready A ch.p.q = < > A ch.q.p = < > 

State S.l can be found in an aggregated state that is defined by the 
following protocol predicate T. 1. 

State S.2 can be found in an aggregated state that is defined by the 
following protocol predicate T.2. 

Similarly, state S.3 can be found in the aggregated state defined by T.0, 
state S.4 can be found in the aggregated state defined by T. 1, and so on. 

We derive the following three inductions regarding the three aggregated 
states T.0, T.1, and T.2. First, at a state defined by T.0, only the first action 
in process p is enabled, and executing this action at a state defined by T.0 
leads the protocol to a state defined by T. 1. Second, at a state defined by T.l,  
only the sole action in process q is enabled, and executing this action at a 
state defined by T.l leads the protocol to a state defined by T.2. Third, at a 
state defined by T.2, only the second action in process p is enabled, and 
executing this action at a state defined by T.2 leads the protocol to a state 
defined by T.O. Therefore, the sequence of transitions from T.0 to T.1, from 
T.l to T.2, and from T.2 to T.0 forms a cycle in which the network performs 
progress. In this case, a state transition diagram for the protocol can be 
drawn as shown in Figure 2.1. 
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Figure 2-1. A state transition diagram for the example protocol. 

4. PROCESS ARRAYS, PARAMETERS, AND 
PARAMETERIZED ACTIONS 

In this section, we introduce two extensions of the AP notation. First, we 
introduce process arrays which allow one to define a set of identical 
processes by defining only one representative process. Second, we introduce 
parameters and parameterized actions which allow one to define a finite set 
of actions as a single parameterized action in a process. 

A process array is a finite set of processes: each of them has the same set 
of constants, the same set of variables, and the same set of actions. Thus, all 
the processes in a process array can be specified by specifying only one 
representative process of the array. For example, let p be an array of n 
processes named p[O], p[l], . . . , p[n-l] respectively. A representative process 
of this array can be p[i], where i is an index whose value is in the range 
between 0 and n- 1. 

A parameter has a name and is of type range. This implies that each 
parameter has a finite number of values. 

A parameterized action is an action that refers to one or more parameters. 
A parameterized action is a shorthand notation for a finite set of actions: 
each of them can be obtained from the parameterized action by first selecting 
for each parameter i in the parameterized action a value v.i from the domain 
of i, and then replacing every occurrence of i in the parameterized action by 
the selected value v.i. 

Next, we extend the example shown in Section 2.2 to illustrate the use of 
process arrays, parameters, and parameterized actions. In the extended 
example, process p communicates with an array of n processes q[i: 0 .. n-11. 
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In this protocol, process p can send a request message to any process q[i], 
and then wait for a reply message from q[i] before p can send the next 
request message to the same q[i]. While process p is waiting for a reply 
message from q[i], p can send a request message to any other process q[il] 
that is different from q[i], provided that p is not waiting for a reply message 
from q[il]. Process p in the extended protocol can be specified as follows. 

process p 
const n : integer {number of processes in process array q) 
var ready : array [O .. n-I] of boolean {init. ready=true) 

txt, t : integer 
par I : 0 .. n-1 
begin 

ready[i] + 
txt := any; 
send rqst(txt) to q[i]; 
ready[i] := false 

[I rcv rply(t) from q[i] -+ 
{use text t in received message) 
ready[i] := true 

end 

Process p in the extended protocol has one constant n, which specifies the 
number of processes in process array q, and one parameter i, which stands 
for the index of process array q. Variable ready in process p is changed to an 
array of n booleans to remember whether process p is waiting for a rply 
message from each of the n processes in process array q or not. Both actions 
in process p are parameterized actions; each action is a shorthand notation of 
n actions as there are n possible values for parameter i. In the first 
parameterized action, if the value of ready[i] is true, then p chooses a new 
value for txt, sends a rqst(txt) message to process q[i], and sets the value of 
ready[i] to false. In the second parameterized action, if p receives a message 
rply(t) from q[i], then p sets the value of ready[i] to true. 

Next, we specify process array q in the extended protocol as follows. 
Each new process q[i], when receiving a request message from p, will return 
a reply message to p. As discussed previously in this section, we can specify 
process array q by specifying one representative process q[i] in the array. 

process q[i : 0 .. n-1] 
const n : integer {number of processes in process array q)  
var t : integer 
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begin 
rcv rqst(t) from p + 

t := any; 
send rply(t) to p 

end 

Each process q[i] has one new constant n, which is the same as the 
constant n in the new process p. There is one action in process q[i]: if q[i] 
receives a rqst(t) message from p, then q[i] chooses a new value for t, and 
returns a rply(t) message to p. 
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ABSTRACT SECURE PROTOCOLS 

We have presented in Chapter 2 the basic features of the Abstract 
Protocol notation, and the state transition diagram of a protocol. In this 
chapter, we proceed to introduce more features of this AP notation. These 
features can be used to specify secure network protocols that can encounter 
adversarial attacks. 

This chapter is organized as follows. In Section 3.1, we specify four 
types of adversarial actions, namely message snooping, message 
modification, message replay, and message loss, that an adversary can 
execute to disrupt the communications between any two processes in a 
protocol. In the next four sections, we introduce four security features of the 
AP notation and discuss how these features can be used to counter the four 
types of adversarial actions. In Section 3.2, we introduce the concept of 
security key, and discuss how to use security keys to counter message 
snooping actions. In Section 3.3, we introduce the concept of a message 
digest and discuss how to use message digests to counter message 
modifications. In Section 3.4, we introduce the concept of a nonce and 
discuss how to use nonces to counter message replays. In Section 3.5, we 
introduce timeout actions and discuss how to use these actions to counter 
message losses. Finally in Section 3.6, we use an example protocol to 
illustrate the use of security keys, message digests, nonces, and timeout 
actions. 
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1. ASSUMPTIONS ABOUT THE ADVERSARY 

We assume that an adversary exists between any two processes p and q in 
a protocol. We also assume that this adversary can disrupt the 
communication between p and q by executing the following four types of 
actions, a finite number of times each. 

I. Message Snooping: 
The adversary can snoop on the messages exchanged between processes 

p and q by making a copy of each head message in each channel between p 
and q. 

11 Message Modzjication : 
The adversary can arbitrarily modify the content of the head message in 

one of the two channels between p and q according to the following 
restriction. Suppose a message has n fields f.0, f.l, f.2, . .., f.(n-1) that satisfy 
a relationship f.0 = F(f.1, f.2, . . ., f.(n-1)) where F is a "security function". 
After the message is arbitrarily modified by the adversary, the n fields f.O1, 
f.l', f.2', . . ., f.(n-1)' of the modified message no longer satisfy the previous 
relationship, i.e. f.0' # F(f. l', f.2', . . . , f.(n-1)'). 

111. Message Replay: 
The adversary can replace the head message in one of the two channels 

between p and q by a copy of a message that is of the same type and was 
sent earlier. 

IV. Message Loss: 
The adversary can discard a message by removing the head message 

from one of the two channels between p and q. 

For simplicity, we assume that each head message in one of the two 
channels between p and q is affected by at most one.adversaria1 action. 

2. SECURITY KEYS 

We assume that each key is a non-negative integer. We also assume that 
each data item is a non-negative integer and vice versa. Therefore, each key 
is also a data item. 

We assume the existence of an appropriate encryption function NCR and 
an appropriate decryption function DCR. Each of these two functions takes a 
key and a data item as arguments and produces a data item as a result. Let K 
be a key and d be a data item. Then, the data item NCR(K, d) is called the 
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encryption of data item d using key K and the data item DCR(K, d) is called 
the decryption of data item d using key K. 

A pair of keys (K, L) is called secure iff the following three conditions 
hold: 

I. Restoration: 
For every data item d, 

d = DCR(L, NCR(K, d)), and 
d = DCR(K, NCR(L, d)). 

11. Hiding: 
For every key K' other than K and every key L' other than L, there is a 

data item d such that 
d # DCR(L1, NCR(K, d)), and 
d # DCR(Kt, NCR(L, d)). 

111. Secrecy: 
If K = L, then there is no efficient algorithm to deduce L from the set of 

data items {NCR(K, d) I d is a data item). If K # L, then there is no efficient 
algorithm to deduce L from K. 

A secure key pair (K, L) is called asymmetric iff K # L, and is called 
symmetric iff K = L. 

For an asymmetric secure key pair (K, L) that belongs to a process p in a 
network, one key K is called apublic key of process p and is denoted as Bp, 
while the other key L is called a private key of process p and is denoted as 
Rp. The public key B, is known to every process in the network and the 
adversary, while the private key Rp is only known to process p. 

For a symmetric secure key pair (K, K) that belongs to a process pair p 
and q in a network, key K is called a shared key of processes p and q and is 
denoted as S ( ,  ,). The shared key S { ,  ,) is known to processes p and q only. 

An asymmetric secure key pair (B,, R,) can be used to counter snooping 
on the messages from a process q to process p as follows. For q to send p a 
message msg(txt), with one field txt that should be kept confidential, q 
computes 

t := NCR(Bp, txt) 

and sends a message msg(t) instead. When p receives msg(t), p recovers txt 
from t by computing 

txt := DCR(Rp, t) 

A symmetric secure key S ( ,  ,I can be used to counter snooping on the 
messages exchanged between processes p and q as follows. For q to send p a 
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message msg(txt), with one field txt that should be kept confidential, q 
computes 

and sends p a message msg(t) instead. When p receives msg(t), p recovers 
txt from t by computing 

txt := DCR(S{, ,), t) 

3. MESSAGE DIGESTS 

A message digest function MD is a function that computes for any data 
item d a fixed-length data item MD(d) such that the following condition is 
satisfied. 

Finger Printing: There is no efficient algorithm that computes, for any 
data item d, another data item d' such that MD(d) = MD(dr). 

Common message digest functions include MD5 [44], SHA [39], or 
HMAC [29]. 

Message digests can be used to counter message modification actions as 
follows. Assume that a message msg(txt) is to be sent from a process p to 
another process q. Assume also that p and q share a secret S. Before p sends 
q the message, p computes an integrity check d for this message as follows: 

where MD is a message digest function, and "txt; S" is a concatenation of 
the txt field and the shared secret. Then p adds d to the message and sends q 
a message msg(txt, d) instead. If the message is arbitrarily modified in its 
transit to become msg(txtr, dr), then q can detect the modification by 
computing MD(txtr; S) and checking that dr is not equal to MD(txtr; S). 

4. NONCES 

A nonce is a non-negative integer, and so each nonce is also a data item. 
During the execution of a security protocol, each process in the protocol can 
generate a nonce by executing a function NONCE. 

The sequence of nonces generated by a process satisfies the following 
two conditions: 
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I. Non-repetition: The value of a generated nonce is different from the 
values of all previously generated nonces in the sequence. 

11. Unpredictability: The value of a generated nonce cannot be deduced 
from the values of all previously generated nonces in the sequence. 

Nonces can be used to counter message replay actions as follows. 
Assume that a message msg(txt) that requires a reply is to be sent from a 
process p to another process q. Before p sends this message to q, p adds a 
nonce nc to the message and sends q a message msg(txt, nc) instead. When q 
receives the message and prepares a reply, q adds the same nonce nc to the 
reply. Finally, when p receives the reply and checks that the nonce is the 
same as that in the original message, it concludes correctly that neither the 
original message nor the reply was replaced by earlier messages. 

5. TIMEOUT ACTIONS 

A timeout action is an action that begins with a timeout guard. A timeout 
guard is of the form: 

timeout <time expression> 

The <time expression> is a boolean expression that involves the 
constants and variables of the process in which the timeout guard occurs. It 
can also refer to a time period that has passed since some action of the 
process has executed. This implies that each process has a real-time clock. 
The clocks in different processes do not need to be synchronized, but they 
have the same rate. 

Timeout actions can be used to counter message loss actions as follows. 
If a process p sends a message to another process q and does not receive 
from q a reply for this message for a relatively long time, then p executes a 
timeout action to send q another copy of the same message or another 
message. 

6. AN EXAMPLE PROTOCOL WITH SECURITY 
FEATURES 

In this section, we extend the example shown in Section 2.2 to illustrate 
the use of security keys, message digests, nonces, and timeout actions. 
Recall that in the example protocol in Section 2.2, process p can send a 
request message to process q, and then wait for a reply message from q 
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before p can send the next request message to q. However, that protocol does 
not provide any security features introduced in this chapter. Therefore, it is 
vulnerable to the message snooping actions, message modification actions, 
message replay actions, and message loss actions executed by an adversary. 

We extend this protocol to counter the four types of actions by an 
adversary as follows. In the extended protocol, we assume that each of 
processes p and q has an asymmetric secure key pair, and that p and q share 
a secret. The following four changes are made on the protocol. First, to 
counter message snooping actions, the text field of each message is 
encrypted using the public key of the receiving process. Second, to counter 
message replay action, a nonce is attached to each message. Third, to 
counter a message modification action, a message digest computed using the 
concatenation of the nonce, the message text, and the shared secret is 
attached to each message. Fourth, to counter message loss actions, p 
executes a timeout action to resend the same request message to q if p 
detects that a request message is lost in transit. Process p in the extended 
protocol can be specified as follows. 

process p 
const Rp : integer {private key of p) 

Bq : integer {public key of q) 
S : integer {shared secret between p and q) 

var ready : boolean {init. ready=true) 
nc, c : integer {nonce) 
txt, t : integer {text) 
d : integer {message digest) 

begin 
ready -+ 

txt := any; 
send rqst(nc, NCR(B,, txt), MD(nc; txt; S)) to q; 
ready := false 

[I rcv rply(c, t, d) from q -+ 
t := DCR(Rp, t); 
if - ready A nc = c A MD(nc; t; S) = d -+ 

{use decrypted text t in received message) 
ready := true 

[I ready v nc # c v MD(nc; t; S) # d -+ 
{discard received message) 
skip 

fi 
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[I timeout (-ready A #ch.p.q + #ch.q.p = 0) + 
send rqst(nc, NCR(B,, txt), MD(nc; txt; S)) to q 

end 

Process p in the extended protocol has one constant Rp, B,, and S, and 
three new variables nc, c, and d. Constant Rp is the private key of p, and 
constant B, is the public key of q. Constant S specifies the shared secret 
between process p and process q. Variable nc specifies a nonce chosen for a 
new request message, variable c is used for keeping the value of the nonce in 
the last received reply message, and variable d is used for keeping the value 
of the message digest in the last received reply message. There are three 
actions in process p. In the first action, if the value of ready is true, then p 
randomly chooses a value for txt, sends a rqst(nc, txt, MD(nc; txt; S)) 
message to process q, and sets the value of ready to false. In the second 
action, if p receives a message rply(c, t, d) from q, then p verifies that c is 
equal to the last used nonce nc, and d is equal to the message digest MD(nc; 
t; S). If so, p sets the value of ready to true; otherwise p discards the received 
message and skips. The third action is a timeout action. In this action, if the 
value of ready is false and the number of messages that are currently in both 
the channel from p to q and the channel from q to p is 0 (which is an 
indication that the sent request message is lost in transit), then p resend the 
request message rqst(nc, NCR(B,, txt), MD(nc; txt; S)) to q. 

Next, we specify process q in the extended protocol as follows. The new 
process q, when receiving a request message from p, will first decrypt the 
text and verify that the received message was not modified in transit, and 
then return a reply message to p. Process q in the extended protocol can be 
specified as follows. 

process q 
const % : integer {private key of q) 

Bp : integer {public key of p) 
S : integer {shared secret between p and q) 

var c : integer {nonce) 
t : integer {text) 
d : integer {message digest) 

begin 
rcv rqst(c, t, d) from p + 

t := DCR(%, t); 
if MD(c; t; S) = d + 

t := any; 
d := MD(c; t; S); 
t := NCR(Bp, t); 
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send rply(c, t, d) to p 
[I MD(c; t; S) # d -+ 

{discard received message) 
skip 

fi 
end 

Process q in the extended protocol has three constants &, B,, and S, and 
two new variables c and d. Constant & is the private key of q that 
corresponds to the public key B, known to p, and constant B, is the public 
key of p that corresponds to the private key Rp owned by p. Constant S is the 
same as the constant S in p. Variable c is used for keeping the value of the 
nonce in the last received request message, and variable d is used for 
keeping the value of the message digest in the last received request message. 
There is one action in process q: if q receives a rqst(c, t, d) message from p, 
then q decrypts t using its private key &, and verifies that the message was 
not modified in transit. If so, q chooses an arbitrary value for t, computes an 
integrity check d, encrypts t using p's public key B,, and returns a rply(c, t, 
d) message to p; otherwise q discards the received message and skips. 
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DENIAL-OF-SERVICE ATTACKS 

A series of denial-of-service attacks that occurred in the past few years 
have caused severe problems to many Internet Service Providers (ISP) and 
online services, and have also posed new challenges to network security 
experts. According to a survey conducted by Computer Security Institute 
(CSI) and Federal Bureau of Investigation (FBI), the estimated financial 
losses caused by denial-of-service attacks amounted to more than $65M in 
the year of 2003 and more than $26M in the year of 2004 [54]. 

Most of the success of denial-of-service attacks can be attributed to the 
two-sided nature of these attacks: they are quite easy to launch but extremely 
hard to defend against. Denial-of-service attacks are easy to launch because 
generating messages of these attacks takes as few as just one computer and 
some handy tools that can be downloaded from the Internet. They are hard to 
defend against because the messages generated by denial-of-service attacks 
are almost indistinguishable from those normal messages generated by 
legitimate users. 

The aim of denial-of-service attacks is to largely reduce or completely 
deny normal services provided by a network or a host. According to the 
ways these attacks achieve their goal, denial-of-service attacks can be 
divided into two categories [45]. The first category is called communication- 
stopping attacks: attacks in this category stop the communication of the 
target host with the outside world, for example ARP spoofing attack. The 
second category is called resource-exhausting attacks: attacks in this 
category exhaust the communicating resources of the target network or the 
computing resources of the target host, for example Smurf attack, SYN 
attack, and distributed denial-of-service attack. In this chapter, we discuss 
how the attacks in each of the two categories prevail, and why hop integrity 
is needed to counter these attacks. 
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COMMUNICATION-STOPPING ATTACKS 

In this type of attacks, an adversary manages to stop the communications 
between the target host and the outside world, such that the target host 
cannot get normal services provided by the outside world, and the outside 
world cannot get normal services provided by the target host. ARP spoofing 
attack [45, 521 is an attack that is often used to achieve this goal. 

We first give an introduction to ARP before we discuss the mechanism 
and defenses of ARP spoofing attack. The Address Resolution Protocol [42], 
or ARP for short, is a protocol for mapping an IP address to a hardware 
address that is recognized in the local network, in particular an Ethernet. To 
illustrate the operation of ARP, consider the following scenario in which a 
network consists of n computers h[O], h[l], . . . , h[n-11. These n computers 
are connected to the same Ethernet. Before any computer h[i] can send a 
message m to any other computer hlj] in this network, h[i] needs to obtain 
the hardware address of hlj]. This can be accomplished using ARP as 
follows. First, the ARP process in h[i] broadcasts a rqst(ipa) message over 
the Ethernet to every other computer in the network, where ipa is the IP 
address of the destination computer hlj]. Second, when the ARP process in 
any computer other than hlj] receives the rqst(ipa) message, it detects that 
ipa is not its own IP address and discards the message. Third, when the ARP 
process in computer hlj] receives the rqst(ipa) message, it detects that ipa is 
its own IP address, and sends a rply(ipa, hda) message over the Ethernet to 
computer h[i], where hda is the required hardware address of computer hlj]. 
When computer h[i] receives the rply(ipa, hda) message, it attaches hda to 
message m, sends m(hda) over the Ethernet to computer hlj], and keeps this 
mapping of ipa and hda (of computer hlj]) in an ARP cache for some time. 
Next time, if computer h[i] wants to send another message m' to computer 
hlj], h[i] first checks its ARP cache to see whether the entry of hljl's ipa and 
hda has expired. If the entry has not expired yet, h[i] sends mr(hda) over the 
Ethernet to hlj]. Otherwise, h[i] repeats the process described above to 
obtain the hardware address of hlj]. 

This scenario demonstrates that there are three functions for ARP: 

I. Resolving IP Addresses: 
Using ARP, each computer can obtain the hardware address of any 

other computer (using the IP address of that other computer) on the same 
Ethernet. 

11. Supporting Dynamic Assignment of Addresses: 
ARP can be used to resolve the IP addresses of computers on the 

same Ethernet even if the IP addresses assigned to these computers 
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change over time. For example, consider the case where a mobile 
computer visits an Ethernet. In this case, the mobile computer can be 
assigned a temporary IP address through some configuration protocol 
like DHCP [9]. Then, the other computers on the Ethernet can use ARP 
to resolve this temporary IP address to the hardware address of the 
mobile computer, and so can send messages to that computer. 

111. Detecting Destination Failures: 
Consider the case where a computer h[i] needs to resolve the IP 

address ipa of another computer hlj] on the same Ethernet. Computer h[i] 
broadcasts a rqst(ipa) message over the Ethernet. If hlj] happens to be 
down at this time, then no rply(ipa, hda) message will be returned to h[i] 
and h[i] will not send an m(hda) message over the Ethernet. Thus, ARP 
ensures that no m(hda) message is sent over the Ethernet unless the 
destination computer of this message has been up shortly before m(hda) 
is sent. 

The simplicity of ARP has made it widely used in the Internet. 
Unfortunately, this simplicity makes ARP vulnerable to two types of 
spoofing attacks. To describe these two types of ARP spoofing attack, 
consider a scenario where an adversary computer h[k], which is on the same 
Ethernet as computer h[i], wants to stop the communication of h[i] with the 
outside world. Thus, h[k] sends forged ARP reply messages to poison the 
ARP caches of h[i] and all other computers on the Ethernet. There are two 
cases to consider. 

I. Stopping Inbound Trafflc: 
In this case, h[k] sends to all the computers of the Ethernet except 

h[i] a spoofed rply(ipa, hda), in which ipa is the IP address of h[i], and 
hda is a nonexistent hardware address. Every computer that receives this 
spoofed rply(ipa, hda) message caches this nonexistent hda for h[i], and 
as a result, all future messages destined for h[i] will not be delivered to 
h[i]. 

11. Stopping Outbound Trafflc: 
In this case, h[k] sends to h[i] a spoofed rply(ipa, hda), in which ipa 

is the IP address of the default router of the Ethernet, and hda is the 
hardware address of h[k]. Once computer h[iIys cache is poisoned by this 
spoofed rply(ida, hda), all future outbound messages of computer h[i] are 
delivered to h[k] rather than to the default router. (The adversary h[k] can 
also forward these outbound messages of h[i] to the default router after it 
reads them. This constitutes a man-in-the-middle attack [52].) 
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In both cases, the adversary h[k] poisons the ARP caches of other 
computers such that the real next-hop destinations of their messages become 
unreachable. Therefore, the Detection of Next-Hop Failure condition of hop 
integrity is violated in this network. 

In order to counter these ARP spoofing attacks two solutions have been 
proposed recently. In one solution, a tool called ARPWATCH [32] is 
proposed to monitor the activities over the Ethernet (such as the transmission 
of rqst(ipa) and rply(ipa, hda) messages over the Ethernet) and check these 
activities against a database of (IP address, hardware address) pairings. In 
another solution, permanent entries for trusted hosts [I, 5 11 are permanently 
stored in the ARP caches in all computers on the Ethernet, so that rqst(ipa) 
and rply(ipa, hda) messages are not sent over the Ethernet and ARP spoofing 
is prevented. Both of these solutions suffer from some problems. 
ARPWATCH supports two functions of ARP, namely resolving IP addresses 
and detecting destination failures, but it does not support the dynamic 
assignment of IP addresses. In the case of permanent entries for trusted 
hosts, detecting destination failures and dynamically assigning addresses are 
not supported. Moreover, neither of the two solutions can overcome 
transmission inducement attack as discussed in [16]. 

By contrast, our secure address resolution protocol, which will be 
presented in Chapter 5, can support all the three functions of ARP, and can 
defeat both ARP spoofing attack and transmission inducement attack. 

2. RESOURCE-EXHAUSTING ATTACKS 

Most known denial-of-service attacks belong to the fashion of exhausting 
the resources of the target systems. In this type of attacks, an adversary 
sends successive huge waves of messages to the target host in order to 
exhaust its computing resources and the bandwidth of its connection link. 
Smurf attack and SYN attack, as described in Chapter 1, both belong to this 
type. 

A common characteristic of attacks of this type is that messages inserted 
by the adversary carry wrong original sources. However, adversaries of these 
attacks put wrong original sources in their attacking messages for different 
reasons. In Smurf attack, the original source that an adversary puts in the 
ping messages is the IP address of the target host, such that each computer 
that receives a copy of this ping message sends a pong message to the target 
host. In SYN attack, the original sources that an adversary puts in the SYN 
messages are IP addresses of hosts that are either down or unreachable at 
present. This is because if the original sources in these attacking SYN 
messages belong to some up and reachable hosts, then these hosts will 
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receive a SYN-ACK message from the target host, and will return a RESET 
message to the target host so as to inform it that they did not send any SYN 
message to the target host before. As a result, the target host is able to 
release the resources that were reserved for the expected connections and 
foil the attack. Moreover, an adversary of any denial-of-service attack tends 
to put a forged source address in its attacking messages, such that the 
identity and location of the adversary will not be easily determined. 

The recent years have seen the emergence of distributed denial-of-service 
attack [45], an even nastier type of denial-of-service attacks. This attack is 
called "distributed" because an adversary does not send out the attacking 
messages by itself. Instead, the adversary intrudes a multitude of unprotected 
hosts over the Internet and installs its attacking software in these unprotected 
hosts. These intruded hosts are called "zombies". The adversary can launch 
an attack against a computer d on the Internet as follows. First, the adversary 
sends a command to all the zombies at the same time to initiate the software 
it installed in the zombies previously. Second, after receiving the command 
from the adversary, each zombie launches a denial-of-service attack, for 
example Smurf attack or SYN attack, against computer d. As a result, 
computer d is flooded by messages from all the zombies. 

In order to curb this type of denial-of-service attacks that involve 
messages with wrong original sources, Ferguson and Senie proposed a 
technique called ingress filtering [12]. Using ingress filtering, each router 
checks whether the recorded source in each received message is consistent 
with the subnetwork from which the router received the message. (A router 
is connected to two or more subnetworks. It can determine which 
subnetwork a message comes from by the incoming interface of the 
message.) When a router receives a message, there are two cases for the 
router to consider: the received message is from a subnetwork with no other 
router connected to it, or the received message is from a subnetwork with 
one or more adjacent routers. 

If the received message is from a subnetwork with no other router 
connected to it, then the router checks if the recorded message source is 
consistent with the address prefix of the subnetwork. If so, then the message 
is supposedly from a host on that subnetwork and the router forwards the 
message as usual. Otherwise, the router discards the message. Therefore, if 
an adversary inserts messages with forged sources into a subnetwork with 
only one router connected to it, then these inserted messages will be detected 
and discarded by ingress filtering. 

However, if the received message is from a subnetwork with one or more 
adjacent routers, the situation is more complex. If the router finds that the 
recorded source of the received message is not consistent with the address 
prefix of the subnetwork from which the message is received, then there are 
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two possible cases to consider: either the message is forwarded by an 
adjacent router, or the message is inserted by a host that is connected to the 
subnetwork and is compromised by an adversary. (An adversary may try to 
insert its messages with forged sources through a compromised host on the 
subnetwork, hoping to convince the receiving router that this message is 
forwarded by an adjacent router.) Ingress filtering cannot distinguish the 
above two cases, therefore it is not effective in stopping denial-of-service 
attacks that insert messages into a subnetwork with two or more routers. 

In order for a network to counter such denial-of-service attacks that insert 
messages with forged sources into a subnetwork with two or more routers, 
the network needs to satisfy the second condition of hop integrity: Detection 
of Message Modification. That is, whenever a router q on the network 
receives a message m supposedly from an adjacent router p, router q can 
correctly determine whether message m was modified or inserted by an 
adversary. Our weak hop integrity protocol and strong hop integrity 
protocol, which will be presented in Chapters 6 and 7, can detect message 
modification, and therefore can detect and discard the messages inserted by 
an adversary. 
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SECURE ADDRESS RESOLUTION PROTOCOL 

In this chapter, we present the secure address resolution protocol. The 
secure address resolution protocol requires a secure server connected to the 
Ethernet, and consists of two sub-protocols: an invite-accept protocol and a 
request-reply protocol. 

This chapter is organized as follows. In Section 5.1, we introduce the 
architecture of secure address resolution, and show that this architecture can 
counter ARP spoofing attacks discussed in Section 4.1. Then, in Sections 5.2 
and 5.3, we present the invite-accept protocol and the request-reply protocol 
respectively. Finally, we discuss four extensions to the secure address 
resolution protocol in Section 5.4. 

1. ARCHITECTURE OF SECURE ADDRESS 
RESOLUTION 

To perform secure address resolution in an Ethernet, a secure server s is 
added to the Ethernet. Then, every communication concerning address 
resolution in this Ethernet is either from s to some computer in the Ethernet, 
or from some computer in the Ethernet to s. 

The secure address resolution protocol between s and a computer h[i] in 
the Ethernet consists of two sub-protocols: the invite-accept protocol and the 
request-reply protocol. The function of the invite-accept protocol is to allow 
the secure server s to invite the different computers in the Ethernet to 
register, periodically and securely, their IP addresses and hardware addresses 
in the secure server. The function of the request-reply protocol is to allow 
each computer in the Ethernet to request the secure server s to resolve an IP 
address of some other computer in the same Ethernet to its hardware 
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address. As shown in Figure 5.1, the invite-accept protocol is between 
process sn in server s and process hn[i] in computer h[i], and the request- 
reply protocol is between process sr in server s and process hr[i] in computer 

Applications 
Transport 
Network 

Subnetwork 

Interface 
I 

I Applications 

1 I Subnetwork 

I Interface 

I 

.write arrays 
ipa, hda, valid 

Figure 5-1. Architecture of secure address resolution. 

Ethernet 

Both the invite-accept protocol and the request-reply protocol are 
designed to tolerate the actions of any adversary that happens to be on the 
Ethernet. We assume that an adversary can perform the following three types 
of actions a finite number of times to disrupt the communications between 
server s and any computer h[i] on the Ethernet. 

I 

I .  MessageLoss: 
After a message is sent (by a process in s or h[i]), the message is 

discarded by the adversary, and is never received (by the intended process in 
h[i] or s, respectively). 

11. Message Modzjkation: 
After a message is sent and before it is received, the message fields are 

arbitrarily modified by the adversary. 

111. Message Replay: 
After a message is sent and before it is received, the message is replaced 

by a copy of an earlier message of the same type by the adversary. 

Note that by executing a sequence of these adversarial actions, the 
adversary can launch the ARP spoofing attacks presented in Section 2.1. Let 
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us consider again the scenario where an adversary computer h[k], which is 
on the same Ethernet as its target computer h[i], wants to stop the 
communication of h[i] with the outside world. First, in order to stop the 
inbound traffic of h[i], h[k] modifies some ARP reply messages that are 
destined to all the computers of the Ethernet except h[i] such that the 
modified ARP reply messages become rply(ipa, hda), in which ipa is the IP 
address of h[i], and hda is a nonexistent hardware address. Also, h[k] 
discards a finite number of ARP reply messages that contain the IP address 
and the correct hardware address of h[i]. The net effect is that every 
computer that receives the spoofed rply(ipa, hda) message caches this 
nonexistent hda for h[i] for some time, and as a result, all messages destined 
for h[i] will not be delivered to h[i] for some time. Second, in order to stop 
the outbound traffic of h[i], h[k] modifies an ARP reply message destined to 
h[i] such that the message becomes rply(ipa, hda), in which ipa is the IP 
address of the default router of the Ethernet, and hda is the hardware address 
of h[k]. Also, h[k] discards a finite number of ARP reply messages that 
contain the IP address and the correct hardware address of the default router 
of the Ethernet. Once computer h[i]'s cache is poisoned by this spoofed 
rply(ida, hda), all future outbound messages of computer h[i] are delivered 
to h[k] rather than to the default router until the poison entry in h[i]'s cache 
expires. 

Next, we illustrate how our secure address resolution architecture 
counters the adversarial actions. In our design, the invite-accept protocol and 
the request-reply protocol use the following three mechanisms to tolerate the 
three types of adversarial actions: 

I. Timeout Actions to Counter Message Loss: 
If a process (in s or h[i]) sends a message and does not receive a reply for 

this message for a relatively long time, the process times out and sends 
another copy of the same message or sends another message. 

11. Shared Secrets to Counter Message ModiJication: 
Server s shares a unique secret scr[i] with each computer h[i] on the 

Ethernet. This secret is used to compute a piece of integrity check 
information to be added to each message that is sent between s and h[i]. For 
example, assume that a message acpt(c, ip, hd), with three fields c, ip, and 
hd, is to be sent between s and h[i]. Then an integrity check d for this 
message can be computed as follows: 

d := MD(c; ip; hd; scr[i]) 

where MD is a message digest function, and "c; ip; hd; scr[i]" is a 
concatenation of the three message fields and the shared secret. This 
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integrity check d is added to the message, to become acpt(c, ip, hd, d), 
before sending it so that if the message fields are arbitrarily modified (by the 
adversary) to become acpt(c1, ip', hd', dl), then d' is no loger equal to MD(cl; 
ip'; hd'; scr[i]). Thus, arbitrarily modifying the fields of a message can be 
detected by the message receiver. 

Note that shared secrets used by the protocols in our secure address 
resolution architecture are based on the following assumption: Every 
computer on the Ethernet has secure access to the secret it shares with the 
secure server and does not reveal the shared secret to any other computer on 
this Ethernet. Otherwise, if an adversary gets to know the secret shared 
between server s and computer h[i] on the Ethernet, then this adversary can 
impersonate h[i] to communicate with s, or it can impersonate s to 
communicate with h[i], and messages sent from the adversary to s or h[i] 
will not be detected. 

111. Nonces to Counter Message Replay: 
Before a process (in s or h[i]) sends a message that requires a reply to 

another process (in h[i] or s, respectively), the sending process attaches to 
the message a unique integer nc, called the message nonce. When the 
receiving process receives the message and prepares a reply, it attaches the 
message nonce nc to the reply. Finally, when the sending process receives 
the reply and checks that the message nonce is the same as that in the 
original message, it concludes correctly that neither the original message nor 
the reply were replaced by earlier messages (by the adversary). 

We argue that ARP spoofing attack cannot succeed under our secure 
address resolution architecture. Note that using our secure address resolution 
architecture, all messages regarding address resolution are exchanged 
between server s and computer h[i], rather than between computer h[i] and 
other computers on the Ethernet. Therefore, in order to launch an ARP 
spoofing attack against computer h[i], adversary h[k] has to try to modify 
address resolution messages between s and h[i]. However, the attempt by 
h[k] will not succeed because of the following two reasons. First, each 
message of the invite-accept protocol between s and h[i] is protected by an 
integrity check computed using the secret shared between s and h[i]. Thus, 
h[k] cannot poison the hardware address of h[i] stored in server s because 
h[k] does not know the secret shared between s and h[i]. Second, each 
message of the request-reply protocol between s and h[i] is protected by an 
integrity check computed using the secret shared between s and h[i]. Thus, 
h[k] cannot fool h[i] by sending h[i] a forged reply message because h[k] 
does not know the secret shared between s and h[i]. 
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In the next two sections, we describe in some detail the two protocols: 
the invite-accept protocol and the request-reply protocol, and discuss their 
correctness proofs. 

2. THE INVITE-ACCEPT PROTOCOL 

The invite-accept protocol consists of process sn in server s and every 
process hn[i] in computer h[i]. Process sn shares a unique secret scr[i] with 
every process hn[i], and it stores the shared secrets in a constant array scr[O 
.. n-I]. This array is defined as a constant in process sn because the actions 
of sn can read this array but cannot update it. (The initial shared secret of a 
host can be assigned to this host along with its IP address when the host is 
added to the Ethernet. The shared secret can be renewed once in a long 
period, for example a month.) 

Process sn also maintains three variable arrays ipa[O .. n-11, hda[O .. 11-11, 
and valid[O .. n-11. Array ipa[O .. 11-11 and array hda[O .. n-1] are used to 
record the IP addresses and hardware addresses of all computers on the 
Ethernet. Array valid[O .. n-1] is the validity count for the entries in arrays 
ipa[O .. n-1] and hda[O .. n-11. When sn writes ipa[i] and hda[i], valid[i] is 
assigned its highest possible value vmax. Periodically, sn decrements 
valid[i] by one. If the value of valid[i] ever becomes zero, then the current 
values of ipa[i] and hda[i] are no longer valid. 

There are two types of messages in the invite-accept protocol: invite and 
accept messages. The invite messages are sent from process sn to every 
process hn[i], whereas the accept messages are sent from every process hn[i] 
to process sn. Every T seconds, process sn sends an invite message to every 
process hn[i]. Then every hn[i] replies by sending an accept message to s. 

Each invite message is of the form invt(nc, md), where nc is the unique 
nonce of the message and md is a list md[O], . . . , md[n-l] of message 
digests. Before sending an invt(nc, md) msg, process sn computes a unique 
value for nc, and computes every md[i] as follows: 

nc := NONCE; 
for every i, 0 I i < n, md[i] := MD(nc; scr[i]) 

where NONCE is a function that when invoked returns a fresh nonce. 
When a process hn[i] receives an invt(nc, md) message, it computes the 

value MD(nc; sc) and compares the computed value with the received value 
md[i] in the message. If they are equal, then hn[i] concludes correctly that 
this message was indeed sent by sn, and sends an accept message to sn. 
Otherwise, hn[i] discards the received invite message. 
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Each accept message, sent by a process hn[i], is of the form acpt(c, x, y, 
d), where c is the message nonce that hn[i] found in the last received invite 
message, x is the IP address of hn[i], y is the hardware address of hn[i], and 
d is the message digest computed by hn[i] as follows: 

d := MD(c; x; y; sc) 

where sc is the secret that h[i] shares with server s. 
When process sn receives an acpt(c, x, y, d) message from a process 

hn[i], it checks that c equals the nonce nc in the last invite message sent by 
sn and that d is a correct digest for the accept message. If so, sn concludes 
correctly that the accept message was indeed sent by hn[i] and stores x in 
ipa[i] and stores y in hda[i]. Otherwise, sn discards the accept message. 
Process sn can be defined as follows. 

process sn 
const scr : array [0 .. n-I] of integer {shared secrets) 

T : integer {T 2 round trip delay between) 
{sn and each hn[i]) 

vmax : integer 
var ipa : array [O .. n-I] of integer 

hda : array [O .. n-I] of integer 
valid : array [0 .. n-I] of 0 .. vmax 
md : array [O .. n-I] of integer 
nc, c, d : integer 
X, Y : integer 
j : O..n 

par 1 : 0 .. n-1 
begin 

timeout (T seconds passed since this action executed last) -+ 
nc := NONCE; 
j := 0; 
doj < n +  

mdu] := MD(nc; scr[j]); 
validti] := max(0, validu] - 1); 
j : = j +  1 

od; 
send invt(nc, md) to hn 

[I rcv acpt(c, x, y, d) from hn[i] -+ 
if c = nc A d = MD(c; x; y; scr[i]) + 

ipa[i] := x; 
hda[i] := y; 
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valid[i] := vmax 
[I c # nc v d # MD(c; x; y; scr[i]) + 

{discard message) 
skip 

fi 
end 

Process sn has two actions. In the first action, sn broadcasts an invite 
message to every process hn[i] on the Ethernet every T seconds. In the 
second action, process sn receives an accept message from a process hn[i], 
checks that the message is correct, and if so, it stores the IP address and 
hardware address contained in the accept message in ipa[i] and hda[i]. 

Note that when sn broadcasts an invite message, it decrements the value 
of every valid[i] by one, and when sn receives an accept message from hn[i] 
and checks that the message is correct, it resets the value of valid[i] to vmax. 
Thus, if sn does not receive any accept message from hn[i] for vmax * T 
seconds, then valid[i] becomes 0 in sn. 

Process hn[i] stores the secret it shares with process sn in a constant 
named sc. (Thus, the value of sc in hn[i] equals the value of scr[i] in sn.) 
Process hn[i] has two other constants, namely ip and hd, that stores the IP 
address and the hardware address of computer h[i], respectively. Process 
hn[i] can be defined as follows. 

process hn[i : 0 .. n-1] 
const sc : integer {sc in hn[i] = scr[i] in sn) 

ip, hd : integer 
var e : array [O .. n-1] of integer 

c, d : integer 
begin 

rcv invt(c, e) from sn + 
d := MD(c; sc); 
if d = e[i] + 

d := MD(c; ip; hd; sc); 
send acpt(c, ip, hd, d) to sn 

[I d # e[i] + 
{discard message) 
skip 

ti 
end 

To verify the correctness of the invite-accept protocol, we can use the 
state transition diagram of this protocol in Figure 5.2. This diagram has 
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seven nodes that represent all possible reachable states of the protocol. Every 
transition in the diagram stands for either a legitimate action (of process sn 
or process hn[i]), or an illegitimate action of the adversary. 

S.2 = ch.sn.hn[i] = < > A 

ch.hn[i].sn = <acpt(c, x, y, d)> A c = nc A d = MD(c; x; y; sc) 

M' = ch.sn.hn[i] = < > A 

ch.hn[i].sn = <acpt(c, x, y, d)> A d + MD(c; x; y; sc) 

Figure 5-2. State transition diagram of the invite-accept protocol. 
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For convenience, each transition is labeled by the message event that is 
executed during the transition. In particular, each transition has a label of the 
form 

where <event type> is one of the following: 

S stands for sending a message of the specified type 
R stands for receiving and accepting a message of the specified type 
D stands for receiving and discarding a message of the specified type 
L stands for losing a message of the specified type 
M stands for modifying a message of the specified type 
P stands for replaying a message of the specified type 

Initially, the network starts at a state S.0 where the two channels between 
processes sn and hn[i] are empty. This state can be defined by the following 
predicate 

At state S.0, exactly one action, namely the timeout action in process sn, 
is enabled for execution. Executing this action at state S.0 leads the network 
to state S. 1 defined as follows. 

Note that in state S.l,  the channel from process sn to process hn[i] has 
only one message: invt(c, e), where the following three conditions hold. 
First, the value of field c in the message equals the value of variable nc in sn. 
Second, the ith element in array e in the message equals the ith element in 
array md in sn. Third, the ih element in array e equals the message digest of 
the concatenation of the value of field c and the ith element in array scr in sn. 

At state S.1, exactly one legitimate action, namely the receive action in 
process hn[i], is enabled for execution. Executing this action at state S.l 
leads the network to state S.2 defined as follows. 

S.2 : ch.sn.hn[i] = < > A 

ch.hn[i].sn = <acpt(c, x, y, d)> A c = nc A d = MD(c; x; y; sc) 

Note that in state S.2, the channel from process hn[i] to process sn has 
only one message: acpt(c, x, y, d), where the following two conditions hold. 
First, the value of field c in the message equals the value of variable nc in sn. 
Second, the value of field d in the message equals the message digest of the 
concatenation of the values of fields c, x, y, and the value of constant sc in 
hn[i]. 
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At state S.2, exactly one legitimate action, namely the receive action in 
process sn, is enabled for execution. Executing this action at S.2 leads the 
network back to S.0 defined above. 

States S.0, S.l and S.2 are called good states because the transitions 
between these states only involve the legitimate actions of processes sn and 
hn[i]. The sequence of the transitions from state S.0 to state S.1, from state 
S.l to state S.2, and from state S.2 to state S.0, constitutes the good cycle in 
which the network performs progress. If only legitimate actions of processes 
sn and hn[i] are executed, the network will stay in this good cycle 
indefinitely. Next, we discuss the bad effects caused by the actions of an 
adversary, and how the network can recover from bad states to good states. 

First, the adversary can execute a message loss action at state S.l or S.2. 
If the adversary executes a message loss action at S.l, the only message in 
the channel from process sn to process hn[i] is removed. If the adversary 
executes a message loss action at S.2, the only message in the channel from 
hn[i] to sn is removed. In either case, the network returns to state S.0 where 
both channels are empty. 

Second, the adversary can execute a message modification action at state 
S.l or S.2. If the adversary executes a message modification action at S.l, 
the network moves to state M where the ith element of array e in message 
invt(c, e) is not equal to the message digest of the concatenation of c and 
scr[i]. This message invt(c, e) will be received and discarded by hn[i] 
because it cannot pass the integrity check in the receive action of hn[i]. If the 
adversary executes a message modification action at S.2, the network moves 
to state M' where the value of field d in message acpt(c, x, y, d) is not equal 
to the message digest of the concatenation of the values of fields c, x, y in 
the message and constant sc in hn[i]. This message acpt(c, x, y, d) will be 
received and discarded by sn because it cannot pass the integrity check in the 
receive action of sn. In either case, the network returns to state S.O. 

Third, the adversary can execute a message replay action at state S.1 or 
S.2. If the adversary executes a message replay action at S. 1, the network 
moves to state P where the value of field c in message invt(c,e) is not equal 
to the value of variable nc in sn, the ith element of array e in the message is 
not equal to the ith element of array md in sn, but the ith element of array e is 
equal to the message digest of the concatenation of the values of field c in 
the message and the ith element of constant array scr in sn. This message 
invt(c, e) will be received by hn[i] and it will pass the integrity check in the 
receive action of hn[i]. Then, hn[i] sends a message acpt(c, x, y, d) to sn, and 
the network enters state P' where the value of field c in message acpt(c, x, y, 
d) is not equal to the value of variable nc in sn. This message acpt(c, x, y, d) 
will be received and discarded by sn because it cannot pass the integrity 
check in the receive action of sn, and the network returns to state S.0 where 
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both channels are empty. If the adversary executes a message replay action 
at S.2, the network moves to state P' as described above. Then, the message 
acpt(c, x, y, d) will be received and discarded by sn, and the network returns 
to S.O. 

From the state transition diagram, it is clear that each imposed 
illegitimate action by the adversary will eventually lead the network back to 
S.0, which is a good state. Once the network enters a good state, the network 
can make progress in the good cycle. Hence the following two theorems 
about the invite-accept protocol are proved. 

Theorem 5.1 In the absence of an adversary, a network that executes the 
invite-accept protocol will follow the good cycle, consisting of the 
transitions @om state S. 0 to state S. 1, @om state S. I to state S.2, andfi.om 
state S.2 to state S. 0, and will stay in this good cycle indefinitely. 

Theorem 5.2 In the presence of an adversary, a network that executes the 
invite-accept protocol will converge to the good cycle in a finite number of 
steps after the adversary finishes executing the message loss, message 
modiJication, and message replay actions. 

THE REQUEST-REPLY PROTOCOL 

Next, we outline the operation of the request-reply protocol as follows. 
When a computer h[i] wants to send a message m to any other computer hlj] 
on the same Ethernet and thus needs to resolve the IP address of hlj] into its 
corresponding hardware address, h[i] can use the request-reply protocol to 
send a request message to server s. Then server s replies by sending a reply 
message to h[i]. If validu] in s is positive, which indicates hlj] has been up 
shortly before s receives the request message, s sends h[i] a reply message 
that contains the hardware address of hu]. Otherwise, s sends h[i] a reply 
message with no hardware address in it. Therefore, h[i] does not send a 
message to hlj] over the Ethernet unless hu] has been up shortly before the 
message is sent. Similarly, with the secure address resolution protocol suite 
installed in the subnetwork, router p does not send any message to router q 
over the Ethernet connecting p and q unless router q has been up shortly 
before the message is sent. Consequently, the Detection of Next-Hop Failure 
condition is attained. 

The request-reply protocol consists of process sr in server s and every 
process hr[i] in computer h[i]. Process sr in server s shares the same unique 
secret with process hr[i] in computer h[i] as shared between processes sn and 
hn[i] in the invite-accept protocol. 
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There are two types of messages in the request-reply protocol: request 
and reply messages. The request messages are sent from process hr[i] to 
process sr, whereas the reply messages are sent from process sr to process 
hr[i]. When process hr[i] needs to resolve an IP address into its 
corresponding hardware address, and hr[i] is not waiting for a reply message 
for a previous request message, hr[i] sends a request message to process sr. 
Then sr replies by sending a reply message to process hr[i]. 

Each request message is of the form rqst(nc, dst, d), where nc is the 
unique nonce of the message, dst is the IP address of the destination 
computer process hr[i] needs to resolve, and d is a message digest computed 
by hr[i]. Before sending a rqst(nc, dst, d) msg, process hr[i] computes a 
unique value for nc, and computes d as follows: 

nc := NONCE; 
d := MD(nc; dst; sc) 

When process sr receives a rqst(nc, dst, d) message, it computes the value 
MD(nc; dst; scr[i]) and compares the computed value with the received 
value d in the message. If they are equal, then sr concludes correctly that this 
message was indeed sent by hr[i], searches its database for the corresponding 
hardware address of dst, and sends a reply message to hr[i]. Otherwise, sr 
discards the received request message. 

Each reply message, sent by process sr, is of the form rply(c, x, y, d), 
where c is the message nonce that sr found in the last received request 
message, x is the IP address of the destination computer requested by hr[i], y 
is the corresponding hardware address of x, and d is the message digest 
computed by sr as follows: 

where scr[i] is the secret that server s shares with computer h[i]. 
When process hr[i] receives a rply(c, x, y, d) message from process sr, it 

checks that c equals the nonce nc in the last request message sent by hr[i], 
that x equals dst in the last request message sent by hr[i], and that d is a 
correct digest for the reply message. If so, hr[i] concludes correctly that the 
reply message was indeed sent by sr and takes y as the hardware address of 
the destination computer. Otherwise, hr[i] discards the reply message. 
Process hr[i] can be defined as follows. 

process hr[i : 0 .. n-1] 
const sc : integer {sc in hr[i] = scr[i] in sr} 

t : integer 
var nc, c, d : integer 

dst, x, y : integer 
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wait : boolean 
begin 

- wait -+ 
wait := true; 
nc := NONCE; 
dst := any; 
d := MD(nc; dst; sc); 
send rqst(nc, dst, d) to sr 

[I rcv rply(c, x, y, d) from sr -+ 
i f n c = c  A d s t = x  A d=MD(c;x;y;sc)+ 

{y is requested information about x) 
wait := false 

[I nc # c v dst # x v d z MD(c; x; y; sc) -+ 
{discard message) 
skip 

fi 

[I timeout wait A (t seconds passed since first action executed last) + 
d := MD(nc; dst; sc); 
send rqst(nc, dst, d) to sr 

end 

Process hr[i] has three actions. In the first action, process hr[i] sends a 
request message to process sr while not waiting. In the second action, hr[i] 
receives a reply message from sr, and derives the hardware address of the 
destination computer. In the third action, hr[i] times out after waiting for t 
seconds, and resends the same request message to sr. 

Note that in the second action, process hr[i] checks both field c and field 
x in message rply(c, x, y, d) to see if they are equal to the values of nc and 
dst respectively. The purpose of this double-checking is to make sure that 
the reply message corresponds to the request message for which hr[i] is 
waiting for a reply, and that the hardware address contained in the reply 
message corresponds to the IP address hr[i] needs to resolve, and also to 
make it harder for the adversary to modify the message. 

Process sr can read (but not write) the three arrays ipa[O .. n-11, hda[O .. 
n-11, and valid[O .. n-1] that are updated regularly by process sn of the 
invite-accept protocol. Process sr can be defined as follows. 

process sr 
const scr : array [O .. n-1] of integer 

ipa : array [O .. n-1] of integer 
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hda : array [O .. n-I] of integer 
valid : array [0 .. n-1] of integer 

var c, d : integer 
x : integer 
j  : O..n 

par i : O..n-l 
begin 

rcv rqst(c, x, d) from hr[i] + 
if d = MD(c; x; scr[i]) + 

j  := 0; 
do ipalj] # x A j  < n + 

j : = j + l  
od; 
if j  < n A validlj] > 0 + 

d := MD(c; x; hdalj]; scr[i]); 
send rply(c, x, hdalj], d) to hr[i] 

[I j  = n v validti] = 0 + 
d := MD(c; x; 0; scr[i]); 
send rply(c, x, 0, d) to hr[i] 

fi 
[I d # MD(c; x; scr[i]) -+ 

{discard message) 
skip 

fi 
end 

Process sr has only one action, in which sr receives a request message 
from a process hr[i] and sends a reply message to hr[i]. 

Note that when process sr receives a request message from process hr[i], 
it first checks the integrity of the message. Then, sr searches array ipa for the 
IP address that hr[i] requests to resolve. If the requested IP address exists in 
array ipa and the validity count for it is larger than 0, then sr sends a reply 
message, containing the corresponding hardware address, to hr[i]. If the 
requested IP address does not exist in array ipa or the validity count is equal 
to 0, then sr sends a reply message, containing an empty hardware address, 
to hr[i]. 

To verify the correctness of the request-reply protocol, we can use the 
state transition diagram as shown in Figure 5.3. This diagram has eight states 
that represent all possible reachable states of the protocol. The predicates for 
each state in the diagram are shown in Figure 5.4. 
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Figure 5-3. State transition diagram of the request-reply protocol. 

M 

Initially, the network starts at a state S.0 where the value of variable wait 
in process hr[i] is false and the two channels between processes hr[i] and sr 
are empty. At S.0, exactly one action, namely the first action in hr[i], is 
enabled for execution. Executing this action at S.0 leads the network to state 
S. 1, where the channel from hr[i] to sr has only one message rqst(c, x, d). In 
this message, the value of field c equals the value of variable nc in hr[i], the 
value of field x equals the value of variable dst in hr[i], and the value of field 
d equals the message digest of the concatenation of the values of fields c, x, 
and the value of constant sc in hr[i]. 

At state S.l, exactly one legitimate action, namely the receive action in 
process sr, is enabled for execution. Executing this action at S.l leads the 
network to state S.2, where the channel from sr to hr[i] has only one message 
rply(c, x, y, d). In this message, the value of field c equals the value of 
variable nc in hr[i], the value of field x equals the value of variable dst in 
hr[i], and the value of field d equals the message digest of the concatenation 
of the values of fields c, x, y, and the ith element of constant array scr in sr. 

At state S.2, exactly one legitimate action, namely the receive action in 
hr[i], is enabled for execution. Executing this action at S.2 leads the network 
back to S.O. 

States S.0, S.l and S.2 are the good states of the request-reply protocol, 
and the sequence of the transitions from S.0 to S.l,  from S.l to S.2, and from 
S.2 to S.0, constitutes the good cycle in which the network performs 
progress. Next, we discuss the bad effects caused by the actions of the 
adversary, and how the network can recover from bad states to good states. 

- 
M:rqst M:rply - S.1 S.2 b M' 

A 
timeout 

D:rqst D:rply 

I 
7 7 7 
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wait A 

ch.hr[i].sr = <rqst(c, x, d)> A c = nc A x = dst A d = MD(c; x; sc) A 

ch.sr.hr[i] = < > 

wait A 

ch.hr[i].sr = < > A 

ch.sr.hr[i] = <rply(c, x, y, d)> A c = nc A x = dst A d = MD(c; x; y; scr[i]) 

wait A 

ch.hr[i].sr = <rqst(c, x, d)> A d # MD(c; x; sc) A 

ch.sr.hr[i] = < > 

wait A 

ch.hr[i].sr = < > A 

ch.sr.hr[i] = <rply(c, x, y, d)> A d # MD(c; x; y; scr[i]) 

wait A 

ch.hr[i].sr = <rqst(c, x, d)> A c # nc A d = MD(c; x; sc) A 

ch.sr.hr[i] = < > 

wait A 

ch.hr[i].sr = < > A 

ch.sr.hr[i] = <rply(c, x, y, d)> A c # nc A d = MD(c; x; y; scr[i]) 

wait A ch.hr[i].sr = < > A ch.sr.hr[i] = i > 

Figure 5-4. Predicates for the states in the state transition diagram of the request-reply 
protocol. 

First, the adversary can execute a message loss action at state S.l or S.2. 
If the adversary executes a message loss action at S.l or S.2, the network 
moves to state L where the value of variable wait in hr[i] is true and the two 
channels between hr[i] and sr are empty. After the timeout action, the 
network returns to S. 1. 

Second, the adversary can execute a message modification action at state 
S.l or S.2. If the adversary executes a message modification action at S.1, 
the network moves to state M where the value of field d in message rqst(c, x, 
d) is not equal to the message digest of the concatenation of the values of 
fields c, x in the message and constant sc in hr[i]. This message rqst(c, x, d) 
will be received and discarded by sr because it cannot pass the integrity 
check. If the adversary executes a message modification action at S.2, the 
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network moves to state M' where the value of field d in message rply(c, x, y, 
d) is not equal to the message digest of the concatenation of the values of 
fields c, x, y in the message and the ith element of constant array scr in sr. 
This message rply(c, x, y, d) will be received and discarded by hr[i] because 
it cannot pass the integrity check. In either case, the network moves to state 
L next and eventually returns to S. 1. 

Third, the adversary can execute a message replay action at state S.1 or 
S.2. If the adversary executes a message replay action at S. 1, the network 
moves to state P where the value of field c in message rqst(c, x, d) is not 
equal to the value of variable nc in hr[i], and the value of field d equals the 
message digest of the concatenation of the values of fields c and x in the 
message and constant sc in hr[i]. This message rqst(c, x, d) will be received 
and accepted by sr because it can pass the integrity check. Thus sr sends to 
hr[i] a message rply(c, x, y, d), and the network moves to state P' where the 
value of field c in message rply(c, x, y, d) is not equal to the value of 
variable nc in hr[i], and the value of field d equals the message digest of the 
concatenation of the values of fields c, x, y, and the ith element of constant 
array scr in sr. If the adversary executes a message replay action at S.2, the 
network moves to state P' as well. From state P', message rply(c, x, y, d) will 
be received and discarded by hr[i] because it cannot pass the integrity check, 
and the network moves to state L. Eventually, the network returns to S. 1. 

From the state transition diagram, it is clear that each imposed 
illegitimate action by the adversary will eventually lead the network back to 
S. 1, which is a good state. Once the network enters a good state, the network 
can make progress in the good cycle. Hence the following two theorems 
about the request-reply protocol are proved. 

Theorem 5.3 In the absence of an adversary, a network that executes the 
request-reply protocol will follow the good cycle, consisting of the 
transitions @om state S. 0 to state S. I ,  @om state S. I to state S.2, and @om 
state S.2 to state S.0, and will stay in this good cycle indefinitely. 

Theorem 5.4 In the presence of an adversary, a network that executes the 
request-reply protocol will converge to the good cycle in afinite number of 
steps ajler the adversary finishes executing the message loss, message 
modzjication, and message replay actions. 

EXTENSIONS 

In this section, we outline four extensions of the secure address 
resolution protocol. First, we extend the protocol to support insecure address 
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resolution for mobile computers that may visit an Ethernet but share no 
secrets with the secure server in that Ethernet. Second, we make the protocol 
more reliable by adding a backup server to its architecture. Third, we make 
the protocol perform some system diagnosis tasks. Fourth, we make the 
secure server act as a server for several Ethernets to which the server is 
attached. 

4.1 Insecure Address Resolution 

Consider an Ethernet that has several computers h[O .. n-I] and a secure 
server s. Assume that these computers and server use the secure address 
resolution protocol (discussed above) to resolve IP addresses to hardware 
addresses. Assume also that mobile computers h[n .. r-1] visit this Ethernet 
but do not share any secret with the secure servers. In order that computers 
h[n .. r-I] can exchange messages with the other computers on this Ethernet, 
h[n .. r-1] need to use an "insecure" version of the address resolution 
protocol. Thus, server s needs to support two versions of the address 
resolution protocol: secure and insecure. If a message is due to insecure 
version of the address resolution protocol, then the information in the 
message is insecure. In particular, if a message comes from or will be sent to 
one of computers h[n .. r-11, or contains resolved address of one of 
computers h[n .. r-I], then the information in the message is insecure. 
Otherwise, if the message is due to secure version of the protocol, then the 
information in the message is secure. 

The insecure version of the invite-accept protocol proceeds as follows. 
Whenever server s sends a invt(nc, md) to every computer in the Ethernet, 
computer h[i], where n I i < r, replies by sending back acpt(nc, x, y, d) 
message, where d has an arbitrary value, to server s. When server s receives 
a acpt(nc, x, y, d) message from computer h[i] and notices that h[i] is one of 
the mobile computers h[n .. r-11, it concludes that the message is insecure 
and so it does not attempt to check the correctness of the message digest d. 
Nevertheless, s stores in its database the IP address x and the hardware 
address y of computer h[i] along with an indication that this information is 
unreliable. 

Process sn, process hn[O .. n-11, and process hn[n .. r-1] in the invite- 
accept protocol with extension for insecure address resolution can be 
specified as follows. 

process sn 
const scr : array [0 .. n-1] of integer {shared secrets) 

T : integer {T 2 round trip delay between) 
{sn and each hn[i]) 
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vmax : integer 
var ipa : array [0 .. r-I] of integer {r > n) 

hda : array [O .. r-1] of integer 
valid : array [O .. n-1] of 0 .. vmax 
md : array [O .. n-1] of integer 
nc, c, d : integer 
X, Y : integer 
j : O..n 

par i : 0 .. r-1 
begin 

timeout (T seconds passed since this action executed last) + 
nc := NONCE; 
j := 0; 
d o j  < n +  

mdu] := MD(nc; scrlj]); 
validb] := max(0, validlj] - 1); 
j : = j + l  

od; 
send invt(nc, md) to hn 

[I rcv acpt(c, x, y, d) from hn[i] -+ 
i f i < n +  

if c = nc A d = MD(c; x; y; scr[i]) -+ 
ipa[i] := x; 
hda[i] := y; 
valid[i] := vmax 

[I c # nc v d # MD(c; x; y; scr[i]) + 
{discard message) 
skip 

fi 
[ ] n I i < r +  

if c = nc + 
ipa[i] := x; 
hda[i] := y; 

[I c # nc -+ 
{discard message) 
skip 

fi 
fi 

end 

process hn[i : 0 .. n-1] 
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const sc : integer {sc in hn[i] = scr[i] in sn) 
ip, hd : integer 

var e : array [O .. n-I] of integer 
c, d : integer 

begin 
rcv invt(c, e) from sn -+ 

d := MD(c; sc); 
if d = e[i] -+ 

d := MD(c; ip; hd; sc); 
send acpt(c, ip, hd, d) to sn 

[I d # e[i] -+ 
{discard message} 
skip 

ti 
end 

process hn[i : n .. r-I] 
const ip, hd : integer 
var e : array [O .. n-1] of integer 

c : integer 
begin 

rcv invt(c, e) from sn -+ 
send acpt(c, ip, hd, 0) to sn 

end 

Note that the proof of correctness of secure version of the invite-accept 
protocol (between process sn and processes hn[O .. 11-11) remains the same as 
we have shown in Figure 5.2. No proof can be derived for the insecure 
version (between process sn and processes hn[n .. r-1]), however, because 
nothing can be guaranteed for the messages exchanged between sn and hn[n 
.. r-11. 

The insecure version of the request-reply protocol proceeds as follows. 
There are two cases to consider. First, server s may receive a rqst(nc, x, d) 
message from a computer h[i], where x is the IP address of computer hu], 
and 0 I i < n. In this case, s replies by sending a rply(nc, x, y, d) message to 
computer h[i], where y is the hardware address of computer hu], and d is 
computed as follows: if 0 I j < n, then d = MD(nc; x; y; scr[i]; 1) (the last bit 
"1" is used to indicate that y is secure information); if n 5 j < r, then d = 

MD(nc; x; y; scr[i]; 0) (the last bit "0" is used to indicate that y is insecure 
information). Second, server s may also receive a rqst(nc, x, d) message 
from a computer h[i], where x is the IP address of computer hu], and n I i < 
r. In this case, s replies by sending a rply(nc, x, y, d) message to computer 



Secure Address Resolution Protocol 5 1 

h[i], where y is the hardware address of computer hfi], and d has an arbitrary 
value. 

Process hr[O .. n-11, process hr[n .. r-11, and process sr in the request- 
reply protocol with extension for insecure address resolution can be 
specified as follows. 

process hr[i : 0 .. n-1] 
const sc : integer {sc in hr[i] = scr[i] in sr) 

t : integer 
var nc, c, d : integer 

dst, x, y : integer 
wait : boolean 

begin 
- wait -+ 

wait := true; 
nc := NONCE; 
dst := any; 
d := MD(nc; dst; sc); 
send rqst(nc, dst, d) to sr 

[I rcv rply(c, x, y, d) from sr + 
if nc = c A dst = x A d = MD(c; x; y; sc; 1) + 

{y is secure information about x) 
wait := false 

[I nc = c A dst = x A d = MD(c; x; y; sc; 0) + 
{y is insecure information about x) 
wait := false 

[I nc # c v dst # x v 
(d ;t MD(c; x; y; sc; 1) A d + MD(c; x; y; sc; 0)) + 

{discard message) 
skip 

fi 

[I timeout wait A (t seconds passed since first action executed last) + 
d := MD(nc; dst; sc); 
send rqst(nc, dst, d) to sr 

end 

process hr[i : n .. r-1] 
const t : integer 
var nc, c, d : integer 

dst, x, y : integer 
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wait : boolean 
begin 

- wait + 
wait := true; 
nc := NONCE; 
dst := any; 
send rqst(nc, dst, 0) to sr 

[I rcv rply(c, x, y, d) from sr + 
i f n c = c  A d s t = x +  

{y is requested information about x) 
wait := false 

[ ] n c # c  v dst ; tx+ 
{discard message) 
skip 

ti 

[I timeout wait A (t seconds passed since first action executed last) + 
send rqst(nc, dst, 0) to sr 

end 

process sr 
const scr : array [O .. n-1] of integer 

ipa : array [O .. r-1] of integer 
hda : array [O .. r- 1 ] of integer 
valid : array [O .. n-1] of integer 

var c, d : integer 
x : integer 
j  : O..r 

par i : O..r-1 
begin 

rcv rqst(c, x, d) from hr[i] + 
i f i < n +  

if d = MD(c; x; scr[i]) -+ 
j := 0; 
doipalj]#x A j < r +  

j : = j + l  
od; 
if j  < n A validlj] > 0 -+ 

d := MD(c; x; hdalj]; scr[i]; 1); 
send rply(c, x, hdalj], d) to hr[i] 

[ ] n I j < r +  



Secure Address Resolution Protocol 

d := MD(c; x; hdau]; scr[i]; 0); 
send rply(c, x, hdab], d) to hr[i] 

[I j = r v validb] = 0 + 
d := MD(c; x; 0; scr[i]; 1); 
send rply(c, x, 0, d) to hr[i] 

fi 
[I d # MD(c; x; scr[i]) + 

{discard message) 
skip 

fi 
[ ] n < i < r +  

j := 0; 
doipal j ]#x A j < r +  

j : = j + 1  
od; 
if (j < n A validu] > 0) v n 5 j < r -+ 

send rply(c, x, hdau], 0) to hr[i] 
[ ] n l j < r +  

send rply(c, x, hdau], 0) to hr[i] 
[I j = r v validu] = 0 + 

send rply(c, x, 0, 0) to hr[i] 
fi 

fi 
end 

Note that the proof of correctness of secure version of the request-reply 
protocol (between process sr and processes hr[O .. n-11) remains the same as 
we have shown in Figure 5.3, except that each appearance of conjunct "d = 

MD(c; x; y; scr[i])" in the predicates of S.2 and P' needs to be replaced by "d 
= MD(c; x; y; scr[i]; 1) v d = MD(c; x; y; scr[i]; O)", and conjunct "d # 

MD(c; x; y; scr[i])" in the predicate of M' needs to be replaced by "d # 

MD(c; x; y; scr[i]; 1) A d # MD(c; x; y; scr[i]; 0)". No proof can be derived 
for the insecure version (between process sr and processes hr[n .. r-l]), 
however, because nothing can be guaranteed for the messages exchanged 
between sr and hr[n .. r-11. 

4.2 A Backup Server 

The main problem of the secure address resolution protocol discussed 
above is that its secure server s represents a single point of failure. This 
problem can be resolved somewhat by adding a backup server bs to the 
Ethernet. Initially server bs is configured in a promiscuous mode so that it 
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receives a copy of every message sent over the Ethernet. Because server bs 
receives copies of all accept messages sent over the Ethernet, bs keeps its 
database up-to-date in the same way server s keeps its database up-to-date. 
(This necessitates that server bs is provided with all the secrets that server s 
shares with the computers on the Ethernet.) 

Server bs sends no message as long as server s continues to send invite 
messages every T seconds over the Ethernet. If server bs observes that server 
s has not sent an invite message for vmax * T seconds, it concludes that 
server s has failed. In this case, bs reports the failure, and assumes the duties 
of s: it starts to send invite messages every T seconds and to send a reply 
message for every received request message. 

4.3 System Diagnosis 

In the secure address resolution protocol, the secure server s may 
conclude that some computer h[i] on the Ethernet has failed. This happens 
when s sends vmax consecutive invite messages and does not receive an 
accept message for any of them from computer h[i]. Thus, server s can be 
designed to report computer failures to the system administrator, whenever s 
detects such failures. In this case, system diagnosis becomes a side task of 
the secure address resolution protocol. 

4.4 Serving Multiple Ethernets 

The architecture of the secure address resolution protocol can be 
extended to allow s to act as a secure server for several Ethernets (rather than 
a single Ethernet) to which s is attached [S]. With this extension, the 
computers h[O .. n-1] can be distributed over several Ethernets and n can 
become large. In the extended architecture, server s sends invite messages 
over the different Ethernets at the same time, then waits to receive accept 
messages over the different Ethernets. Also, each computer on an Ethernet 
can request (from server s) the hardware address of any other computer on 
the same Ethernet or on a different Ethernet. 
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WEAK HOP INTEGRITY PROTOCOL 

In this and the next two chapters, we present the hop integrity protocols. 
The hop integrity protocols belong to two thin layers, namely the secret 
exchange layer and the integrity check layer, that need to be added to the 
network layer of the protocol stack of each router in a network. The function 
of the secret exchange layer is to allow adjacent routers to periodically 
generate and exchange (and so share) new secrets. The exchanged secrets are 
made available to the integrity check layer, which uses them to compute and 
verify the integrity check for every data message transmitted between the 
adjacent routers. 

Figure 6.1 shows the protocol stacks in two adjacent routers p and q. The 
secret exchange layer has one protocol: the secret exchange protocol. This 
protocol consists of the two processes pe and qe in routers p and q, 
respectively. The integrity check layer has two protocols: the weak integrity 
check protocol and the strong integrity check protocol. The weak version 
consists of the two processes pw and qw in routers p and q, respectively. 
This version can detect message modification, but not message replay. The 
strong version of the integrity check layer consists of the two processes ps 
and qs in routers p and q, respectively. This version can detect both message 
modification and message replay. 

In this chapter, we present the weak hop integrity protocol, which is the 
combination of the secret exchange protocol and the weak integrity check 
protocol. In the next chapter, we present the strong hop integrity protocol, 
which is the combination of the secret exchange protocol and the strong 
integrity check protocol. 
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Figure 6-1. Protocol stack for hop integrity protocols. 

- - - - -. 

This chapter is organized as follows. First, we present the secret 
exchange protocol, and verify its correctness. Then, we present the weak 
integrity check protocol, and verify its correctness. 

- - - - - 

1. SECRET EXCHANGE PROTOCOL 

In the secret exchange protocol, the two processes pe and qe maintain 
two shared secrets sp and sq. Secret sp is used by router p to compute the 
integrity check for each data message sent by p to router q, and it is also 
used by router q to verify the integrity check for each data message received 
by q from router p. Similarly, secret sq is used by q to compute the integrity 
checks for data messages sent to p, and it is used by p to verify the integrity 
checks for data messages received from q. 

As part of maintaining the two secrets sp and sq, processes pe and qe 
need to change these secrets periodically, say every te hours, for some 
chosen value te. Process pe is to initiate the change of secret sq, and process 
qe is to initiate the change of secret sp. Processes pe and qe each has a public 
key and a private key that they use to encrypt and decrypt the messages that 

v * 
network I ke) 

t w 
I 
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carry the new secrets between pe and qe. A public key is known to all 
processes (in the same layer), whereas a private key is known only to its 
owner process. The public and private keys of process pe are named B, and 
R, respectively; similarly, the public and private keys of process qe are 
named B, and % respectively. 

For process pe to change secret sq, the following four steps need to be 
performed. First, pe generates a new sq, and encrypts the concatenation of 
the old sq and the new sq using qe's public key B,, and sends the result in a 
rqst message to qe. Second, when qe receives the rqst message, it decrypts 
the message contents using its private key R, and obtains the old sq and the 
new sq. Then, qe checks that its current sq equals the old sq from the rqst 
message, and installs the new sq as its current sq, and sends a rply message 
containing the encryption of the new sq using pe's public key B,. Third, pe 
waits until it receives a rply message from qe containing the new sq 
encrypted using B,. Receiving this rply message indicates that qe has 
received the rqst message and has accepted the new sq. Fourth, if pe sends 
the rqst message to qe but does not receive the rply message from qe for 
some tr seconds, indicating that either the rqst message or the rply message 
was lost before it was received, then pe resends the rqst message to qe. Thus 
tr is an upper bound on the round trip time between pe and qe. 

Note that the old secret (along with the new secret) is included in each 
rqst message and the new secret is included in each rply message to ensure 
that if an adversary modifies or replays rqst or rply messages, then each of 
these messages is detected and discarded by its receiving process (whether 
pe or qe). 

Process pe has two variables sp and sq declared as follows. 

var sp :  integer 
sq : array [O .. 11 of integer 

Similarly, process qe has an integer variable sq and an array variable sp. 
In process pe, variable sp is used for storing the secret spy variable sq[O] 

is used for storing the old sq, and variable sq[l] is used for storing the new 
sq. The assertion sq[O] # sq[l] indicates that process pe has generated and 
sent the new secret sq, and that qe may not have received it yet. The 
assertion sq[O] = sq[l] indicates that qe has already received and accepted 
the new secret sq. Initially, 

sq[0] in pe = sq[l] in pe = sq in qe, and 
sp[O] in qe = sp[l] in qe = sp in pe. 

Process pe can be defined as follows. (Process qe can be defined in the 
same way except that each occurrence of Rp in pe is replaced by an 
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occurrence of R, in qe, each occurrence of B, in pe is replaced by an 
occurrence of Bp in qe, each occurrence of sp in pe is replaced by an 
occurrence of sq in qe, and each occurrence of sq[O] or sq[l] in pe is 
replaced by an occurrence of sp[O] or sp[l], respectively, in qe.) 

process pe 
const Rp : integer {private key of pe) 

B, : integer {public key of qe) 
te : integer {time between secret exchanges) 
tr : integer {upper bound on round trip time) 

var sp : integer 
sq : array [0 .. 11 of integer{initially sq[O] = sq[l] = sq in 

qe) 
d, e : integer 

begin 
timeout (sq[O] = sq[l] A 

(te hours passed since rqst message sent last)) + 
sq[l] := NEWSCR; 
e := NCNB,, (sq[Ol; sq[ll)); 
send rqst(e) to qe 

[I rcv rqst(e) from qe + 
(d, e) := DCR(Rp, e); 
i f s p = d  v s p = e +  

sp := e; 
e := NCR(B,, sp); 
send rply(e) to qe 

[ ] s p # d  A s p # e +  
{detect adversary) 
skip 

fi 

[I rcv rply(e) from qe + 
d := DCR(R,, e); 
if sq[l] = d + 

sq[O] := sq[l] 
[I N l I  # d + 

{detect adversary) 
skip 

fi 

[I timeout (sq[O] # sq[l] A 
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(tr seconds passed since rqst message sent last)) + 
e := NCR(Bq, (sq[Ol; sq[ll)); 
send rqst(e) to qe 

end 

The four actions of process pe use three functions NEWSCR, NCR, and 
DCR defined as follows. Function NEWSCR takes no arguments, and when 
invoked, it returns a fresh secret that is different from any secret that was 
returned in the past. Function NCR is an encryption function that takes two 
arguments, a key and a data item, and returns the encryption of the data item 
using the key. For example, execution of the statement 

causes the concatenation of sq[O] and sq[l] to be encrypted using the public 
key Bq, and the result to be stored in variable e. Function DCR is a 
decryption function that takes two arguments, a key and an encrypted data 
item, and returns the decryption of the data item using the key. For example, 
execution of the statement 

causes the (encrypted) data item e to be decrypted using the private key Rp, 
and the result to be stored in variable d. As another example, consider the 
statement 

(d, e) := DCR(Rp, e) 

This statement indicates that the value of e is the encryption of the 
concatenation of two values (vo; vl) using key R,. Thus, executing this 
statement causes e to be decrypted using key Rp, and the resulting first value 
vo to be stored in variable d, and the resulting second value vl to be stored in 
variable e. 

To verify the correctness of the secret exchange protocol, we can use the 
state transition diagram of this protocol in Figure 6.2. This diagram has six 
nodes that represent all possible reachable states of the protocol. Every 
transition in the diagram stands for either a legitimate action (of process pe 
or process qe), or an illegitimate action of the adversary. 
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timeout & S:rqst R:rply 

R:rqst & S:rp!y - S.l S.2 - 

R:rqst R:rp!y * M.1 L.0 4 M.2 

ch.pe.qe = < > A ch.qe.pe = < > A sq[O] in pe = sq[l] in pe = sq in qe 

ch.pe.qe = <rqst(e)> A ch.qe.pe = < > A e = NCR(Bq, (sq[O]; sq[l])) A 

sq[O] in pe + sq[l] in pe A sq[O] in pe = sq in qe 

ch.pe.qe = < > A ch.qe.pe = <rply(e)> A e = NCR(B,, sq) A 

sq[O] in pe # sq[l] in pe A sq[l] in pe = sq in qe 

ch.pe.qe = <rqst(e)> A ch.qe.pe = < > A e # NCR(Bq, (sq[O]; sq[l])) A 

sq[O] in pe # sq[l] in pe A (sq[O] in pe = sq in qe v sq[l] in pe = sq in qe) 

ch.pe.qe = < > A ch.qe.pe = <rply(e)> A e # NCR(B,, sq) A 

sq[O] in pe + sq[l] in pe A (sq[O] in pe = sq in qe v sq[l] in pe = sq in qe) 

ch.pe.qe = < > A ch.qe.pe = < > A 

sq[O] in pe + sq[l] in pe A (sq[O] in pe = sq in qe v sq[l] in pe = sq in qe) 

Figure 6-2. State transition diagram of  the secret exchange protocol. 

Initially, the protocol starts at a state S.0, where the two channels 
between processes pe and qe are empty and the values of variables sq[O], 
sq[l] in pe and variable sq in qe are the same. This state can be defined by 
the following predicate 
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At state S.0, exactly one action, namely the first timeout action in process 
pe, is enabled for execution. Executing this action at state S.0 leads the 
protocol to state S. 1 defined as follows. 

At state S. 1, exactly one legitimate action, namely the receive action (that 
receives a rqst message) in process qe, is enabled for execution. Executing 
this action at state S. 1 leads the protocol to state S.2 defined as follows. 

S.2 : ch.pe.qe = < > A ch.qe.pe = <rply(e)> A 

e = NCR(B,, sq) A 

sq[O] in pe ;t sq[l] in pe A sq[l] in pe = sq in qe 

At state S.2, exactly one legitimate action, namely the receive action (that 
receives a rply message) in process pe, is enabled for execution. Executing 
this action at state S.2 leads the protocol back to state S.0 defined above. 

States S.0, S.l and S.2 are called good states because the transitions 
between these states consist of executing the legitimate actions of the two 
processes. The sequence of transitions from state S.0 to state S.l, to state 
S.2, and back to state S.0 constitutes the good cycle of the protocol. If only 
legitimate actions of processes pe and qe are executed, the protocol will stay 
in this good cycle indefinitely. Next, we discuss the bad effects caused by 
the actions of an adversary, and how the protocol can recover from these 
effects. 

First, the adversary can execute a message loss action at state S. 1 or S.2. 
If the adversary executes a message loss action at state S.l or S.2, the 
network moves to a state L.0 defined as follows. 

L.0 :ch.pe.qe = < > A ch.qe.pe = < > A 

sq[O] in pe # sq[l] in pe A 

(sq[O] in pe = sq in qe v sq[l] in pe = sq in qe) 

At state L.0, only the second timeout action in pe is enabled for 
execution, and executing this action leads the network back to state S. 1. 

Second, the adversary can execute a message modification action at state 
S.l or S.2. If the adversary executes a message modification action at state 
S. 1, the network moves to state M. 1 defined as follows. 
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If the adversary executes a message modification action at state S.2, the 
network moves to state M.2 defined as follows. 

M.2 : ch.pe.qe = < > A ch.qe.pe = <rply(e)> A 

e # NCR(B,, sq) A 

sq[O] in pe ;t sq[l] in pe A 

(sq[O] in pe = sq in qe v sq[l] in pe = sq in qe) 

In either case, the protocol moves next to state L.0 and eventually returns 
to state S. 1. 

Third, the adversary can execute a message replay action at state S.l or 
S.2. If the adversary executes a message replay action at state S.1, the 
network moves to state M.1. If the adversary executes a message replay 
action at state S.2, the network moves to state M.2. As shown above, the 
protocol eventually returns to state S. 1. 

From the state transition diagram in Figure 6.2, it is clear that each 
illegitimate action by the adversary will eventually lead the network back to 
state S.1, which is a good state. Once the network is in a good state, the 
network can progress in the good cycle. Hence the following two theorems 
about secret exchange protocol are proved. 

Theorem 6.1 In the absence of an adversary, a network that executes the 
secret exchange protocol will follow the good cycle, consisting of the 
transitions fiom state S.0 to state S. I ,  @om state S. I to state S.2, and fiom 
state S.2 to state S. 0, and will stay in this good cycle indefinitely. 

Theorem 6.2 In the presence of an adversary, a network that executes the 
secret exchange protocol will converge to the good cycle in a finite number 
of steps after the adversary finishes executing the message loss, message 
modiJication, and message replay actions. 

2. WEAK INTEGRITY CHECK PROTOCOL 

The main idea of the weak integrity check protocol is simple. Consider 
the case where a data(t) message, with t being the message text, is generated 
at a source src then transmitted through a sequence of adjacent routers r.1, 
r.2, . . ., r.n to a destination dst. When data(t) reaches the first router r.1, r.1 
computes a digest d for the message as follows: 

d := MD(t; scr) 
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where MD is the message digest function, (t; scr) is the concatenation of the 
message text t and the shared secret scr between r.1 and r.2 (provided by the 
secret exchange protocol in r.1). Then, r.1 adds d to the message before 
transmitting the resulting data(t, d) message to router r.2. 

When the second router r.2 receives the data(t, d) message, r.2 computes 
the message digest using the secret shared between r.1 and r.2 (provided by 
the secret exchange process in r.2), and checks whether the result equals d. If 
they are unequal, then r.2 concludes that the received message has been 
modified, discards it, and reports an adversary. If they are equal, then r.2 
concludes that the received message has not been modified and proceeds to 
prepare the message for transmission to the next router r.3. Preparing the 
message for transmission to r.3 consists of computing d using the shared 
secret between r.2 and r.3 and storing the result in field d of the data(t, d) 
message. 

When the last router r.n receives the data(t, d) message, it computes the 
message digest using the shared secret between r.(n-I) and r.n and checks 
whether the result equals d. If they are unequal, r.n discards the message and 
reports an adversary. Otherwise, r.n sends the data(t) message to its 
destination dst. 

Note that this protocol detects and discards every modified message. 
More importantly, it also determines the location where each message 
modification has occurred. 

Process pw in the weak integrity check protocol has two constants sp and 
sq that pw reads but never updates. These two constants in process pw are 
also variables in process pe, and pe updates them periodically, as discussed 
in the previous section. Process pw can be defined as follows. (Process qw is 
defined in the same way except that each occurrence of p, q, pw, qw, sp, and 
sq is replaced by an occurrence of q, p, qw, pw, sq, and spy respectively.) 

process pw 
const sp : integer 

sq : array [O .. 11 of integer 
var t, d : integer 
begin 

rcv data(t, d) from qw + 
if MD(t; sq[O]) = d v MD(t; sq[l]) = d + 

{accept message} 
RTMSG 

[I MD(t; sq[O]) # d A MD(t; sq[l]) # d + 
{report an adversary) 
skip 

fi 
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[I true -+ 
{p receives data(t, d) from router other than q) 
{and checks that its message digest is correct) 
RTMSG 

[I true + 
{either p receives data(t) from an adjacent host or) 
{p generates the text t for the next data message) 
RTMSG 

end 

In the first action of process pw, if pw receives a data(t, d) message from 
qw while sq[O] # sq[l], then pw cannot determine beforehand whether qw 
computed d using sq[O] or using sq[l]. In this case, pw needs to compute 
two message digests using both sq[O] and sq[l] respectively, and compare 
the two digests with d. If either digest equals d, then pw accepts the 
message. Otherwise, pw discards the message and reports the detection of an 
adversary. 

The three actions of process pw use two functions named MD and NXT, 
and one statement named RTMSG. Function MD takes one argument, 
namely the concatenation of the text of a message and the appropriate secret, 
and computes a digest for that argument. Function NXT takes one argument, 
namely the text of a message (which we assume includes the message 
header), and computes the next router to which the message should be 
forwarded. Statement RTMSG is defined as follows. 

if NXT(t) = p + 
{accept message) 
skip 

[I NXT(t) = q + 
d := MD(t; sp); 
send data(t, d) to qw 

[I NXT(t) # p A NXT(t) # q + 
{compute d as the message digest of) 
{the concatenation o f t  and the secret) 
{for sending data to NXT(t); forward) 
{data(t, d) to router NXT(t)) 
skip 

fi 
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To verify the correctness of the weak integrity protocol, we can use the 
state transition diagram of this protocol in Figure 6.3, which considers the 
channel from process qw to process pw. (The channel from pw to qw, and 
the channels from pw to any other weak integrity process in an adjacent 
router of p, can be verified in the same way.) This diagram has two nodes 
that represent all possible reachable states of the protocol. Every transition in 
the diagram stands for either a legitimate action (of process pw or process 
qw), or an illegitimate action of the adversary. 

%data R:data & Accept 

- - 

T.0 = I A ('ddata(t, d) message in ch.qw.pw, d = MD(t; sq)) 

T.0 L:data 

M.0 = I A ('ddata(t, d) message in ch.qw.pw, 
(7Head(data(t, d)) d = MD(t; sq)) A 

( Head(data(t, d)) 3 d # MD(t; sq))) 
where 
I = sq in qw = sq[O] in pw v sq in qw = sq[l] in pw 

M:data 

Figure 6-3. State transition diagram of the weak integrity check protocol. 

A 
R:data & 
Discard 

Note that because the weak integrity check protocol operates below the 

7 
1 

secret exchange protocol in the protocol stack, we can assert that (sq in qw = 

sq[O] in pw v sq in qw = sq[l] in pw) is an invariant in every state of the 
weak integrity protocol. We denote this invariant as I in the specification in 
Figure 6.3. Also note that the notation Head(data(t, d)) in the specification in 
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Figure 6.3 is a predicate whose value is true iff data(t, d) is the head message 
of the specified channel. 

Initially, the protocol starts at state T.O. At state T.0, two legitimate 
actions, namely the send action in qw that sends a data message, and the 
receive action in pw that receives a data message, can be executed. 
Executing either one of the two actions at state T.0 keeps the protocol in 
state T.O. 

States T.0 is the only good state in the weak integrity protocol. The 
sequence of the transitions from state T.0 to state T.0 constitutes the good 
cycle of the protocol. If only legitimate actions of processes pw and qw are 
executed, the protocol will stay in this good cycle indefinitely. Next, we 
discuss the bad effects caused by the actions of an adversary, and how the 
protocol can recover from these effects. 

First, the adversary can execute a message loss action at state T.O. If the 
adversary executes a message loss action at state T.0, the predicate that for 
every data message data(t, d) in the channel from qw to pw, d = MD(t; sq), 
still holds. Therefore, the protocol stays at state T.O. 

Second, the adversary can execute a message modification action at state 
T.O. If the adversary executes a message modification at state T.0, the 
protocol moves to state M.O. The receive and discard action executed by pw 
at state M.0 leads the protocol back to state T.O. 

From the state transition diagram, it is clear that each illegitimate action 
by the adversary will eventually lead the protocol back to T.0, which is a 
good state. Once the protocol is in a good state, the protocol can progress in 
the good cycle. Hence the following two theorems about the weak integrity 
check protocol are proved. 

Theorem 6.3 In the absence of an adversary, a network that executes the 
weak integrity check protocol follows the good cycle, consisting of the single 
transition from state T.0 to state TO, and will stay in this good cycle 
indefinitely. 

Theorem 6.4 In the presence of an adversary, a network that executes the 
weak integrity check protocol will converge to the good cycle in a finite 
number of steps after the adversary finishes executing the message loss and 
message modification actions. 

However, the weak integrity check protocol, while being able to detect 
and discard all modified messages, cannot detect some replayed messages. 
In the next chapter, we introduce the strong integrity protocol that is capable 
of detecting and discarding all modified and replayed messages. 
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STRONG HOP INTEGRITY USING SOFT 
SEQUENCE NUMBERS 

The weak hop integrity protocol presented in the previous chapter can 
detect message modification but not message replay. In this chapter, we 
discuss how to strengthen this protocol to make it detect message replay as 
well. We present the strong hop integrity protocol in two steps. First, we 
present a protocol that uses "soft sequence numbers" to detect and discard 
replayed data messages. Second, we show how to integrate this soft 
sequence number protocol into the weak integrity check protocol presented 
in the previous chapter to construct the strong integrity check protocol. The 
combination of the secret exchange protocol and the strong integrity check 
protocol is the strong hop integrity protocol. 

1. SOFT SEQUENCE NUMBER PROTOCOL 

Before we introduce the soft sequence number protocol, we use a simple 
protocol to illustrate the need for sequence numbers in detecting message 
replay. Consider a protocol that consists of two processes u and v. Process u 
continuously sends data messages to process v. Assume that there is an 
adversary that attempts to disrupt the communication between u and v by 
inserting (i.e. replaying) old messages in the message stream from u to v. In 
order to overcome this adversary, process u attaches an integer sequence 
number s to every data message sent to process v. To keep track of the 
sequence numbers, process u maintains a variable nxt that stores the 
sequence number of the next data message to be sent by u and process v 
maintains a variable exp that stores the sequence number of the expected 
data message to be received by v. We call this protocol "hard sequence 
number protocol", because process u always remembers the next sequence 
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number to be sent, and process v always remembers the next sequence 
number it expects to receive. 

To send the next data(s) message, process u assigns s the current value of 
variable nxt, then increments nxt by one. When process v receives a data(s) 
message, v compares its variable exp with s. If exp 5 s, then v accepts the 
received data(s) message and assigns exp the value s + 1; otherwise v 
discards the data(s) message. Processes u and v of this protocol can be 
specified as follows. 

process u 
var nxt : integer {sequence number of next sent message) 
begin 

true -+ 
send data(nxt) to v; 
nxt := nxt + 1 

end 

process v 
var s : integer {sequence number of received message) 

exp : integer {sequence number expected next) 
begin 

rcv data(s) from u -+ 
if s < exp 4 

{reject message; report an adversary) 
skip 

[I exp I s -+ 
{accept message) 
exp := s + 1 

ti 
end 

Correctness of this protocol is based on the observation that the predicate 
exp 5 nxt holds at each (reachable) state of the protocol. However, if due to 
some fault (for example an accidental resetting of the values of variable nxt) 
the value of exp becomes larger than value of nxt, then all the data messages 
that u sends from this point, and until the value of nxt becomes equal to the 
value of exp, will be wrongly discarded by v. Next, we describe how to 
modify this protocol such that the number of messages, that can be wrongly 
discarded when the synchronization between u and v is lost due to some 
fault, is at most N, for some chosen integer N that is larger than one. 

The modification consists of adding to process v t y o  variables c and 
cmax, whose values are in the range O..N-1. When process v receives a 
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data(s) message, v compares the values of c and cmax. If c z cmax, then 
process v increments c by one (mod N) and proceeds as before, namely 
either accepts the data(s) message if exp I s, or discards the message if exp > 
s. Otherwise, if c = cmax, then v accepts the message, assigns c the value 0, 
and assigns cmax a random integer in the range O..N-I. We call this 
modified protocol "soft sequence number protocol" because process v at 
some instants "forgets" the sequence number it expects to receive next, and 
accepts the next received sequence number without question. 

There are two considerations behind this modification. First, it guarantees 
that process v never discards more than N data messages when the 
synchronization between u and v is lost due to some fault. Second, it ensures 
that the adversary cannot predict the instants when process v is willing to 
accept any received data message, and so cannot exploit any such 
predictions by sending replayed data messages at the predicted instants. 

Formally, processes u and v in this protocol can be defined as follows. 

process u 
var nxt : integer {sequence number of next sent message) 
begin 

true -+ 
send data(nxt) to v; 
nxt := nxt + 1 

end 

process v 
const N : integer 
var s : integer {sequence number of received message) 

exp : integer {sequence number expected next) 
c, cmax : 0 .. N-1 

begin 
rcv data(s) from u + 

if s < e x p  A c # c m a x +  
{reject message; report an adversary) 
c := (c + 1) modN 

[I e x p I s  v c = c m a x +  
{accept message) 
exp := s + 1; 
if c # cmax + 

c := (c + 1) mod N 
[I c = cmax + 

c := 0; 
cmax := RANDOM(0, N-1) 



fi 
fi 

end 

Chapter 7 

2. STRONG INTEGRITY CHECK PROTOCOL 

Processes u and v of the soft sequence number protocol presented in 
Section 7.1 can be combined with process pw of the weak integrity check 
protocol to construct process ps of the strong integrity check protocol. A 
main difference between processes pw and ps is that pw exchanges messages 
of the form data(t, d), whereas ps exchanges messages of the form data(s, t, 
d), where s is the message sequence number computed according to the soft 
sequence number protocol, t is the message text, and d is the message digest 
computed over the concatenation (s; t; scr) of s, t, and the shared secret scr. 
Process ps in the strong integrity check protocol can be defined as follows. 
(Process qs can be defined in the same way.) 

process ps 
const sp : integer 

sq : array [O .. 11 of integer 
N : integer 

var s, t, d: integer 
exp, nxt: integer 
c, cmax : 0 . . N- 1 

begin 
rcv data(s, t, d) from qs + 

if MD(s; t; sq[O]) = d v MD(s; t; sq[l]) = d + 
if s < exp A c # cmax + 

{reject message; report an adversary} 
c := (c + 1) mod N 

[I exp l s v c = cmax + 
{accept message} 
exp := s + 1; 
if c # cmax + 

c := (c + 1) mod N 
[I c = cmax + 

c := 0; 
cmax := RANDOM(0, N-1) 

fi 
fi 

[I MD(s; t; sq[O]) # d A MD(s; t; sq[l]) # d + 



Strong Hop Integrity Using Soft Sequence Numbers 

{report an adversary) skip 
fi 

[I true + 
{p receives a data(s, t, d) from a router other than q and) 
{checks that its encryption is correct and) 
{its sequence number is within range) 
RTMSG 

[I true + 
{either p receives a data(t) from adjacent host or) 
{p generates the text t for the next data message) 
RTMSG 

end 

The first and second actions of process ps have a statement RTMSG that 
is defined as follows. 

if NXT(t) = p + 
{accept message) 
skip 

[I NXT(t) = q + 
d := MD(nxt; t; sp); 
send data(nxt, t, d) to qs; 
nxt := nxt + 1 

[I NXT(t) # p A NXT(t) # q -+ 
{compute next soft sequence number s) 
{for sending data to NXT(t); compute d) 
{as the message digest of the concatenation) 
{of s, t and the secret for sending data to) 
{NXT(t); forward data(s, t, d) to router NXT(t)) 
skip 

fi 

To verify the correctness of the strong integrity check protocol, we can 
use the state transition diagram of this protocol in Figure 7.1, which 
considers only the channel from process qs to process ps. (The channel from 
ps to qs, and the channels from ps to any other strong integrity check process 
in an adjacent router of p, can be verified in the same way.) This diagram 
has four nodes that represent all possible reachable states of the protocol. 
Every transition in the diagram stands for either a legitimate action (of 
process ps or process qs), or an illegitimate action of the adversary. 
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Note that because the strong integrity check protocol operates below the 
secret exchange protocol in the protocol stack, we can assert that (sq in qs = 

sq[O] in ps v sq in qs = sq[l] in ps) is an invariant in every state of the 
strong integrity check protocol. We denote this invariant as I in the 
specification in Figure 7.1. 

U.0 = I A (V data(s, t, d) message in ch.qs.ps, 
d = MD(s; t; sq) A (Head(data(s, t, d)) 3 s 2 exp in ps)) 

S:data R:data & Accept 

M.0 = I A (V data(s, t, d) message in ch.qs.ps, 
(-Head(data(s, t, d)) = d = MD(s; t; sq)) A 

( Head(data(s, t, d)) 2 d # MD(s; t; sq))) 

U.0 

P.0 = I A (V data(s, t, d) message in ch.qs.ps, 
d = MD(s; t; sq) A 

(Head(data(s, t, d)) 3 s < exp in ps) A c # cmax in ps) 

L:data 

P.1 = I A (V data(s, t, d) message in ch.qs.ps, 
d = MD(s; t; sq) A 

(Head(data(s, t, d)) 3 s < exp in ps) A c = cmax in ps) 
where 
I = sq in qs = sq[O] in ps v sq in qs = sq[l] in ps 

Figure 7-1. State transition diagram of the strong integrity check protocol. 
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Initially, the protocol starts at state U.O. At state U.0, two legitimate 
actions, namely the send action in qs that sends a data message, and the 
receive action in ps that receives a data message, can be executed. Executing 
either one of the two actions at state U.0 keeps the protocol in state U.O. 

State U.0 is the only good state in the strong integrity protocol. The set of 
transitions that leads the protocol from state U.0 to state U.0 constitutes the 
good cycle of the protocol. If only legitimate actions of processes ps and qs 
are executed, the protocol will stay in this good cycle indefinitely. Next, we 
discuss the bad effects caused by the actions of an adversary, and how the 
protocol can recover from these effects. 

First, the adversary can execute a message loss action at states U.O. If the 
adversary executes a message loss action at state U.0, the predicate that for 
every data message data(s, t, d) in the channel from qs to ps, d = MD(s; t; 
sq), still holds. Therefore, the protocol stays at state U.O. 

Second, the adversary can execute a message modification action at state 
U.0 causing the protocol to move to state M.O. The receive and discard 
action executed by ps at state M.0 leads the protocol back to state U.O. 

Third, the adversary can execute a message replay action at state U.O. 
There are two cases to consider. First, if the replayed message data(s, t, d) is 
too old such that the secret used to compute the message digest is different 
from the current value of constant sq in process qs, then the protocol moves 
to state M.0, and later returns to state U.0 as discussed above. Second, if the 
replayed message data(s, t, d) is recent such that the secret used to compute 
the message digest is equal to the current value of constant sq in process qw, 
then the protocol moves either to state P.0 or to state P.1. With a high 
probability of (cmax - 1) / cmax, the protocol moves to state P.0, and the 
replayed message will be received and discarded by ps because the value of 
field s in the message indicates that the message is replayed. With a 
probability of 1 / cmax, the protocol moves to state P.l, and the replayed 
message will be received and accepted. In both cases the protocol returns to 
state U.O. 

From the state transition diagram, it is clear that each illegitimate action 
by the adversary will eventually lead the protocol back to U.0, which is a 
good state. Once the protocol is in a good state, the protocol can progress in 
the good cycle. Moreover, if the adversary replays a recent data message, the 
replayed message will be detected and discarded with high probability (cmax 
- 1) / cmax. Hence the following two theorems about the strong integrity 
check protocol are proved. 

Theorem 7.1 In the absence of an adversary, a network that executes the 
strong integrity check protocol follows the good cycle, consisting of a single 
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transition fiom state U. 0 to state U.0, and will stay in this good cycle 
indefinitely. 

Theorem 7.2 In the presence of an adversary, a network that executes the 
strong integrity check protocol will converge to the good cycle in a finite 
number of steps after the adversary finishes executing any number of 
message loss or message modification actions. This network will also 
converge to the good cycle in afinite number of steps with a high probability 
of (cmax - I )  / cmax after the adversary finishes executing any number of 
message replay actions. 

The protocols used by the weak hop integrity protocol and the strong hop 
integrity protocol have several novel features that make them correct and 
efficient. First, whenever the secret exchange protocol attempts to change a 
secret, it keeps both the old secret and the new secret until it is certain that 
the integrity check of any future message will not be computed using the old 
secret. Second, the integrity check protocol computes a digest at every router 
along the message route so that the location of any occurrence of message 
modification can be determined. Third, the soft sequence number protocol 
makes the strong hop integrity protocol tolerate any loss of synchronization 
between any two adjacent routers. 
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STRONG HOP INTEGRITY USING HARD 
SEQUENCE NUMBERS 

Recall that in the strong hop integrity protocol presented in Chapter 7, we 
use soft sequence numbers to achieve strong hop integrity. We call those 
sequence numbers "soft" because at some random instants the receiving 
process forgets the last kept sequence number and accepts the next sequence 
number received from the sending process. There are two considerations 
behind the designing of soft sequence numbers. First, we want to limit the 
number of discarded messages during the period when the sending process 
and the receiving process lose synchronization of their sequence numbers. 
Therefore, we make the receiving process accept the newest sequence 
number from the sending process once in a while, so that the two processes 
can regain their synchronization shortly after their synchronization was lost. 
Second, we do not want to make it easy for an adversary to guess the instants 
at which the receiving process will accept any sequence number received 
next. If the adversary can guess the instant of acceptance correctly, it can 
make the receiving process accept a replayed sequence number at this instant 
and replay more messages afterward. Therefore, we randomize the instant of 
acceptance. 

Soft sequence numbers help achieve strong hop integrity almost 
flawlessly. The only flaw, however, is that there is still a slight chance that 
an adversary might correctly guess the instant of acceptance even though the 
instant is randomized. An alternative to avoid this slight possibility is to use 
hard sequence numbers to achieve strong hop integrity, such that the two 
processes stick to their sequence numbers and the adversary has no chance to 
try its luck. However, one problem with hard sequence numbers is that the 
sending process and the receiving process will lose synchronization of their 
sequence numbers when a reset occurs. In one case as stated in Section 7.1, 
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the receiving process may discard a lot of fresh data messages after the 
sending process wakes up from a reset. In another case as will be shown in 
Section 8.1, the receiving process may accept replayed data messages after 
the receiving process wakes up from a reset. We do not want any one of the 
two bad cases to occur, and therefore we need to first solve the problems due 
to resets before hard sequence numbers can be exploited. 

In this chapter, we propose a reset-tolerant version of hard sequence 
numbers, such that hard sequence numbers can be used as a substitute of soft 
sequence numbers to achieve strong hop integrity. This chapter is organized 
as follows. In Section 8.1, we review the hard sequence number protocol, 
which was first presented in Section 7.1, and elaborate the problems with 
this protocol in presence of resets. Then in Section 8.2, we discuss how the 
two operations, "SAVE" and "FETCH", can be added to make the hard 
sequence number protocol tolerate resets, and formally specify the new 
protocol. We show in Section 8.3 that the new protocol can converge to the 
resynchronization of the two processes after a reset occurred, and we show 
in Section 8.4 how "SAVE and "FETCH can be applied in the strong hop 
integrity protocol as an alternative of soft sequence numbers. Finally, we 
discuss tradeoffs between soft sequence numbers and hard sequence 
numbers in Section 8.5. 

HARD SEQUENCE NUMBER PROTOCOL 

In Section 7.1, we presented a hard sequence number protocol. In that 
protocol which consists of a sending process u and a receiving process v, 
process u attaches an integer sequence number s to every data message sent 
to process v in order to overcome an adversary that replays old messages in 
the message stream from u to v. Process u maintains a variable nxt that 
stores the sequence number of the next data message to be sent, and process 
v maintains a variable exp that stores the sequence number of the next data 
message that v expects to receive. To send the next data(s) message, process 
u assigns s the current value of variable nxt, then increments nxt by one. 
When process v receives a data(s) message, v compares its variable exp with 
s. If exp I s, then v accepts the received message and assigns exp the value s 
+ 1 ; otherwise v discards the message. Processes u and v of this protocol are 
specified as follows. 

process u 
var nxt : integer {sequence number of next sent message) 
begin 

true + 
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send data(nxt) to v; nxt := nxt + 1 
end 

process v 
var s : integer {sequence number of received message} 

exp : integer {sequence number expected next} 
begin 

rcv data(s) from u -+ 
if s < exp -+ 

{reject message; report an adversary} 
skip 

[I exp I s -+ 
{accept message} 
exp := s + 1 

fi 
end 

The hard sequence number protocol presented above can be used to 
detect replayed messages as long as both u and v stay up and never get reset. 
If process v ever encounters a reset, then an unbounded number of replayed 
messages can be accepted by v after v wakes up from the reset. Moreover, if 
process u ever encounters a reset, then an unbounded number of fresh 
messages that are sent by u after u wakes up can be discarded by v. In the 
following three paragraphs, we explain how these two bad possibilities can 
occur. 

First, consider the case where process v is reset and later wakes up. When 
v wakes up, v has lost the last value of its variable exp. Thus v resumes its 
operation with its variable exp set to 0, and any (positive) sequence number 
received next by v will be accepted by v. Suppose the last fresh sequence 
number received by v before the reset is x, which is unbounded. In this case, 
an adversary can replay in ascending order all the messages with sequence 
numbers in the range from 1 to x, and all these replayed messages will be 
unsuspectedly accepted by v. 

Next, consider the case where process u is reset and later wakes up. 
When u wakes up, u has lost the last value of its variable nxt that it will use 
on the next message to be sent to v. Thus u resumes its operation with nxt set 
to 0, and the next fresh message u sends to v will be data(O), and the next 
fresh message u sends to v will be data(l), and so on. Suppose the current 
value of variable exp in v is y, which is unbounded. In this case, all fresh 
messages sent from u to v with sequence numbers less than y will be 
regarded as replayed messages and discarded by v. 



7 8 Chapter 8 

Last, consider the case where both process u and process v are reset and 
later wake up. When u wakes up, u resumes its operation in the protocol with 
nxt set to 0. When v wakes up, v resumes its operation with exp set to 0. In 
this case, an adversary gets the chance to replay messages sent before u was 
reset. The adversary can disrupt the communication between u and v by 
replaying a message with sequence number z that is larger than the current 
value of variable nxt in u, so that v is forced to set its variable exp to z. As a 
result, all fresh messages sent from u to v with sequence numbers in the 
range between nxt and z will be regarded as replayed messages and will be 
discarded by v. 

In the next section, we propose two operations, "SAVE" and "FETCH", 
that can be added to the hard sequence number protocol to help the two 
processes regain synchronization of their sequence numbers after a reset 
occurred to one or both of them. 

2. A PROTOCOL WITH SAVE AND FETCH 
OPERATIONS 

As we have shown, the hard sequence number protocol is susceptible to 
reset because computer u (or v) forgets the last sent (or received) sequence 
number after a reset occurs to it. Therefore, we propose two operations, 
"SAVE" and "FETCH", that can be used to somewhat "reserve" the 
sequence number and thus can protect the communication between u and v 
from the impact of resets. The functions of SAVE and FETCH are 
straightforward. When the SAVE operation is executed at a computer, the 
last sequence number in the memory of the computer is stored in the 
persistent memory (e.g. the hard disk) of the computer. It is realistic to 
assume that the content of the persistent memory of the computer will not be 
corrupted or erased by a reset of that computer. When the FETCH operation 
is executed at a computer, the last sequence number stored in the persistent 
memory is loaded from the persistent memory into the memory. (SAVE and 
FETCH can be implemented by write-to-file and read-from-file operations in 
an operating system.) 

SAVE and FETCH can be used in designing a new hard sequence 
number protocol that can avoid the impact of resets. A computer that 
executes the hard sequence number protocol can regularly execute SAVE to 
store a copy of a recent sequence number in its persistent memory. If this 
computer is reset and wakes up shortly, then although the last sequence 
number kept in its memory has been forgotten, this computer can execute 
FETCH to reload the sequence number stored in its persistent memory into 
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its memory, such that this computer does not need to restart its sequence 
number from 0. 

To make sure the new protocol is correct, however, two considerations 
need to be addressed before the reloaded sequence number can be used for 
the next sent (or received) message of the resumed traffic. Firstly, the 
execution of SAVE takes some time, during which the computer can still 
send (or receive) messages. Hence there can be a gap between the reloaded 
sequence number (which is the last stored sequence number) and the 
sequence number of the last message sent (or received) by this computer 
before the reset. If a computer that plays the sender uses the reloaded 
sequence number directly and the size of the gap between the reloaded 
sequence number and the last sent sequence number before the reset is n, 
then the first n sent messages will be regarded as replayed messages by the 
receiver and will be discarded. If a computer that plays the receiver uses the 
reloaded sequence number directly, then an adversary can replay old 
messages whose sequence numbers are in the gap between the reloaded 
sequence number and the last received sequence number. These replayed 
messages will be accepted by the receiver because their sequence numbers 
look fresh to the receiver. In order to avoid these bad possibilities, a leap 
number should be added to the reloaded sequence number to leap over the 
gap before it can be used. This leap number must be large enough to ensure 
that after adding it to the reloaded sequence number, the resulting new 
sequence number is larger than all previously used sequence numbers. We 
will discuss how large the leap number should be in the next section. 

Secondly, another reset can occur to the same computer that just waked 
up and has not yet executed the first SAVE after the last reset. In this case, 
those sequence numbers that have been used before the second reset occurs 
will be reused (or can be replayed) after the computer wakes up from the 
second reset. To avoid this problem, the computer should first execute a 
SAVE after the leap number is added to the reloaded sequence number. If 
this computer plays the sender, it will wait for the SAVE to finish before it 
sends the next message. If this computer plays the receiver, it will 
temporarily keep the messages that are received before the SAVE finishes in 
a buffer. After the SAVE completes its execution, messages kept in the 
buffer will be either delivered or discarded based on their sequence numbers. 

Moreover, we have to decide how frequently the SAVE operation should 
be executed. On one hand, we do not want to execute SAVE too frequently 
because this can generate too much overhead. On the other hand, we do not 
want to execute SAVE too infrequently so that the saved sequence number is 
not recent enough. Our choice of the interval between two consecutive 
SAVES is the maximum number of messages that can be sent (or received) 
during a time period that is equal to the execution time of SAVE. For 
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example, on a Pentium I11 730-MHz machine running Linux 2.4.18, a write- 
to-file operation takes loops and sending a 1000-byte message takes 4ps on 
average. In this case, we can set the interval between two consecutive 
SAVEs to be at least 25. 

Note that we measure the interval between two consecutive SAVEs in 
terms of the number of messages, rather than in terms of time, because the 
rate of message generation may change over time. At some time, the rate of 
message generation can be very low. In this case, measuring the interval in 
terms of time leads to wasteful SAVEs because when the interval to the next 
SAVE expires, the sequence number has not advanced much since the last 
SAVE was executed. Note also that the amount of time taken by every 
execution of SAVE can be different according to the current load of CPU. 
Therefore, we pick a reasonable upper bound on the execution time of 
SAVE, and determine the maximum number of messages that can be sent (or 
received) during this amount of time. 

Next, we present the new hard sequence number protocol augmented 
with SAVE and FETCH. The new process u has two new inputs K, and T,, 
and has two new variables 1st and wait. Input K, is the interval between the 
sequence numbers stored by two consecutive SAVE operations in process u. 
Input T,, is the time needed to execute a SAVE operation at u. Variable 1st is 
the last sequence number stored by a SAVE operation, and variable wait is a 
boolean that is set to true only when process u is reset. The new process u 
can be specified as follows. 

{Ku ' 0) 
{next to be sent, init. 0) 
{last stored, init. 0)  
{initially false) 

process u 
inp K,, T ,  : integer 
var nxt : integer 

1st : integer 
wait : boolean 

begin 
- wait -+ 

send data(nxt) to v; 
nxt := nxt + 1; 
if nxt 2 K, + 1st -+ 

1st := nxt; 
&SAVE(lst) {execute SAVE in background) 

[I nxt < K, + 1st -+ 
skip 

fi 

[I (process u is reset) -+ 
wait := true 
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[I (process u wakes up after a reset) + 
FETCH(nxt); 
SAVE(nxt + 2K,); {execute SAVE in foreground) 
nxt := nxt + 2K,; 
1st := nxt; 
wait := false 

end 

In the first action of process u, when variable wait is false, u sends the 
next message data(nxt) to process v and increment nxt by 1. Then, u checks 
whether nxt has become K, greater than the last stored sequence number 1st. 
If so, u executes SAVE to store nxt into persistent memory. (This SAVE 
should be executed in the background so that it does not block the normal 
communication between u and v.) In the second action, when u is reset, 
variable wait is set to true. In the third action, when u wakes up after a reset, 
u executes FETCH(nxt) to reload the last stored sequence number into 
variable nxt, executes SAVE(nxt + 2K,) to store the result of adding the leap 
number to the reloaded sequence number, and sets nxt and 1st to their new 
values after the SAVE operation has finished. Then, variable wait is set to 
false, so that the first action is enabled again and u can send the next 
message data(nxt) to v. 

The new process v, that is augmented with SAVE and FETCH, has two 
new inputs K, and T,, and two new variables 1st and wait. Input K, is the 
interval between the sequence numbers stored by two consecutive SAVE 
operations in process v. Input T, is the time needed to execute a SAVE 
operation at v. Variable 1st is the last sequence number stored by a SAVE 
operation, and variable wait is a boolean that is set to true only when process 
v is reset. The new process v can be specified as follows. 

process v 
inp K,, T, : integer {Kv > 0) 
var exp : integer {expected to receive, init. 0) 

1st : integer {last stored, init. 0) 
s : integer 
wait : boolean {initially false) 

begin 
rcv data(s) from u + 

if -wait + 
if s < exp + 

{reject message; report an adversary) 
skip 
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[I exp I s + 
{accept message) exp := s + 1 

fi ; 
if exp 2 K, + 1st -+ 

1st := exp; 
&SAVE(exp) {execute SAVE in background) 

[I exp < K, + 1st + 
skip 

fi 
[I wait -+ 

{discard message) skip 
fi 

[I (process v is reset) + 
wait := true 

[I (process v wakes up after a reset) -+ 
FETCH(exp); 
SAVE(exp + 2Kv); {execute SAVE in foreground) 
exp := exp + 2Kv; 
1st := exp; 
wait := false 

end 

Process v has three actions. In the first action, v receives data(s) from u 
and checks whether variable wait is true. If v is not waiting, then v decides 
whether to discard or deliver the message according to the value of s and the 
value of exp, and then checks whether exp has become at least K, greater 
than the last stored sequence number 1st. If so, v executes SAVE(exp) in the 
background to store exp into persistent memory. If v is waiting, then v 
discards the message. In the second action, when v is reset, variable wait is 
set to true. In the third action, when v wakes up after a reset, v executes 
FETCH(exp) to reload the last stored sequence number, executes SAVE(exp 
+ 2K,) to store the result of adding the leap number to the reloaded sequence 
number, and sets exp and 1st to their new values after the SAVE operation 
has finished. Finally, variable wait is set to false. 
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3. CONVERGENCE OF NEW HARD SEQUENCE 
NUMBER PROTOCOL 

We are now ready to show why the sending process u and the receiving 
process v in the hard sequence number protocol are guaranteed to converge 
to a fresh sequence number after a reset. Our objective is to show that after 
adding a leap number to the reloaded sequence number, the resulting new 
sequence number is larger than the last sequence number used before the 
reset occurs, hence no old sequence number can be reused to send fresh 
message and no replayed message will be accepted by the receiver. We 
analyze the aforementioned two cases: a reset occurs at the sending process 
u, and a reset occurs at the receiving process v. (From the analysis of the two 
cases it is straightforward to verify the third case when both process u and 
process v are reset.) After showing that the new sequence number used after 
the reset is guaranteed to be fresh, we will show that the following two 
conditions hold under the new protocol. First, when process u is reset, a 
bounded number of sequence numbers will be lost but no fresh message will 
be discarded by process v if no message reorder occurs. Second, when 
process v is reset, the number of discarded fresh messages is bounded. 

We start with the analysis of the case in which a reset occurs at process u. 
Assume that the reset occurs while process u is executing a SAVE to store 
the sequence number nxt into persistent memory. From Figure 8.1, there are 
two possible cases to consider: the reset occurs before the current SAVE 
finishes, or the reset occurs after the current SAVE finishes. 

SAVE(s-K,) SAVE(s) 

s+tl s+K, sequence 
number 
at process u 

t' (t' < K,) 

SAVE(s) Reset or Reset SAVE(s+K,) 
starts occurs occurs starts 

here here 

Figure 8-1. Analysis of reset occurring at process u. 

To check the first case, suppose the reset occurs at sequence number s + 
t, where t < K, because the next sequence number to be stored will be s + K,. 
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The sequence number fetched by u after it wakes up is s - Ku, as SAVE(s) 
has not completed. The gap between the reset sequence number and the 
fetched sequence number can be computed by 

(S + t) - (S - K,) I (S + K,) - (S - K,) = 2Ku 

To check the second case, suppose the reset occurs at s + t', where t' < 
K,,. The sequence number fetched by u after it wakes up is s, as SAVE(s) has 
completed. The gap between the reset sequence number and the fetched 
sequence number can be computed by 

(S + t') - s I (S + K,) - s = K, 

Therefore, if we add a leap number of 2Ku to the fetched sequence 
number, as specified in process u, the next sequence number used by u is 
guaranteed to be fresh. 

Next, we analyze the case when a reset occurs at process v. Assume that 
a reset occurs while process v is executing a SAVE to store the sequence 
number r into persistent memory. From Figure 8.2, there are two possible 
cases to consider: the reset occurs before the current SAVE finishes, or the 
reset occurs after the current SAVE finishes. 

SAVE(r-K,) SAVE(r) 

r+tf r+K, sequence 
number 
at process v 

t' (t' < K,) 

SAVE(r) Reset or Reset SAVE(r+K,) 
starts occurs occurs starts 

here here 

Figure 8-2. Analysis of reset occurring at process v. 

To check the first case, suppose the reset occurs at sequence number r + 
t, where t < K, because the next sequence number to be stored will be r + K,. 
The sequence number fetched by q after it wakes up is r - K,, as SAVE(r) 
has not completed. The gap between the reset sequence number and the 
fetched sequence number can be computed by 

(r + t) - (r - K,) I (r + K,) - (r - K,) = 2K, 
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To check the second case, suppose the reset occurs at r + t', where t' < 
K,. The sequence number fetched by v after it wakes up is r, as SAVE(r) has 
completed. The gap between the reset sequence number and the fetched 
sequence number can be computed by 

(r + t') - r S (r + K,) - r = Kv 

Therefore, if we add a leap number of 2K, to the fetched sequence 
number, as specified in process v, it is guaranteed that v will not accept any 
replayed message. 

Next, we show that the hard sequence number protocol satisfies the 
following two properties. 

I. When the sender is reset, no more than 2K,fresh sequence numbers 
are lost and no fresh messages are discarded by the receiver if no message 
reorder occurs. 

Note that process u may lose some fresh sequence numbers after a reset 
because u adds a leap number 2Ku to the reloaded sequence number. 
Suppose s-K, is the last stored sequence number when a reset occurs at u. 
Then when u wakes up, u resumes with sequence number s+K, because u 
first reloaded s-K, and added 2Ku to it. In this case, u loses no more than 2Ku 
fresh sequence numbers because u resumes with s+K, and all numbers 
between s-K, and s+K, become unusable. Therefore, the total number of lost 
sequence number is bounded by 2K,. Moreover, since s+K, is larger than all 
previously used sequence numbers, no fresh message will be discarded by 
the receiver unless any fresh message sent after the reset arrives earlier than 
any fresh message sent before the reset. 

11. When the receiver is reset, no more than 2K, fresh messages are 
discarded by the receiver. 

Note that process v may discard some fresh messages after a reset 
because q adds a leap number 2Kv to the reloaded sequence number. 
Suppose r-K, is the last stored sequence number when a reset occurs at v. 
Then when v wakes up, v resumes with sequence number r+K, because v 
first reloaded r-K, and added 2Kv to it. The worst case that can occur is that 
r-Kv+l has not been received by v when a reset occurs. In this case, v may 
discard at most 2Kv fresh messages if no message loss occurs, because v 
resumes with r+K,, and all fresh messages with sequence numbers between 
r-K, and r+K, will be regarded as replayed messages by v. Therefore, the 
total number of discarded fresh messages is bounded by 2Kv. 
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4. APPLICATION OF SAVE AND FETCH IN 
STRONG HOP INTEGRITY PROTOCOL 

We have shown that the sending process u and the receiving process v in 
the hard sequence number protocol, with the help of SAVE and FETCH, are 
guaranteed to converge to a fresh sequence number after a reset. Next, we 
discuss how SAVE and FETCH can be integrated with the strong integrity 
check protocol, such that the protocol can recover from resets. 

To integrate SAVE and FETCH with the strong integrity check protocol, 
the following four steps can be followed. First, in the first action of process 
ps in the protocol, we need to add statements to periodically execute SAVE, 
and add statements to put incoming messages in a buffer when ps is waiting 
for a SAVE that executes after a FETCH to finish. Second, in the RTMSG 
statement, we also need to add a statement to periodically execute SAVE. 
Third, we need to add an action to process ps to execute FETCH and SAVE 
when process ps wakes up from a reset. Fourth, we need to add a timeout 
action to set up the sequence number properly after a post-reset SAVE 
finishes its execution. 

Similarly, the SAVE and FETCH operations can be used in the anti- 
replay window protocol in IPsec to make the protocol reset-tolerant [22], 
such that security associations (SA) that are affected by resets do not need to 
be deleted and reestablished as proposed in previous works [19,30]. 

5. TRADEOFFS BETWEEN SOFT SEQUENCE 
NUMBERS AND HARD SEQUENCE NUMBERS 

Although both soft sequence numbers and hard sequence number can be 
used to achieve strong hop integrity, the two approaches are different and 
each of them has its own advantages and disadvantages. In this section, we 
discuss the tradeoffs between soft sequence numbers and hard sequence 
numbers. 

First, we discuss the implementation complexity of the two approaches. 
Soft sequence numbers are easier to implement because they do not require 
SAVE and FETCH operations and do not require persistent memory. By 
contrast, implementation of hard sequence numbers requires write and read 
operations, namely SAVE and FETCH, and a real-time timeout for 
executing SAVE after FETCH. Moreover, a good upper bound of the 
number of sent message and a good upper bound of the number of received 
message during the execution delay of SAVE are also needed by hard 
sequence numbers. 
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Second, we discuss the degrees of security of the two approaches. Soft 
sequence numbers can only provide high, but not complete, protection 
against message replay attacks. This is because there is a small chance that 
an adversary may correctly guess the point that the receiving process accepts 
next received sequence number anyway. By contrast, hard sequence 
numbers can provide complete protection against message replay attacks, 
because both the sending process and the receiving process stick to the 
sequence number they keep, and an adversary has no chance to try its luck. 
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IMPLEMENTATION CONSIDERATIONS 

We have introduced in Chapters 5 to 8 the three components of hop 
integrity protocol suite, namely the secure address resolution protocol, the 
weak hop integrity protocol, and two versions of the strong hop integrity 
protocol that use soft sequence numbers and hard sequence numbers 
respectively. We discussed their functions, specified each of the protocols in 
a formal fashion using a variation of Abstract Protocol Notation, and verified 
the correctness of each protocol using state transition diagrams. All the 
protocols are stateless, require small overhead, and do not constrain the 
network protocol in the routers in any way. Thus, we believe they are 
compatible with IP in the Internet. 

In this chapter, we discuss implementation considerations of hop 
integrity protocols and acceptable values for the inputs of each of these 
protocols. In Section 9.1, we discuss several issues concerning the 
implementation of keys and secrets. In Section 9.2, we discuss acceptable 
lengths of timeout periods used in the secret exchange protocol. In Section 
9.3, we discuss considerations about sequence numbers used in the strong 
integrity check protocol. Finally in Section 9.4 we discuss message overhead 
of the strong integrity check protocol. 

1. KEYS AND SECRETS 

In the secret exchange protocol presented in Chapter 6, we define keys 
with two inputs Rp and B,. Input Rp is a private key for router p, and input B, 
is a public key for router q. These are long-term keys that remain fixed for 
long periods of time (say one to three months), and can be changed only off- 
line and only by the system administrators of the two routers. Thus, these 
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keys should consist of a relatively large number of bytes, say 128 bytes 
(1024 bits) each. There are no special requirements for the encryption and 
decryption functions that use these keys in the secret exchange protocol. 

In the integrity check protocols in Chapters 6 and 7, we define secrets 
with two inputs sp and sq and define the integrity check computation 
function as function MD. Inputs sp and sq are short-lived secrets that are 
updated every 4 hours. Thus, this key should consist of a relatively small 
number of bytes, say 8 bytes. Function MD is used to compute the digest of 
a data message. Function MD can compute in two steps as follows. First, the 
standard function MD5 [44] is used to compute a 16-byte digest of the data 
message. Second, the first 4 bytes from this digest constitute our computed 
message digest. (Computing a message digest over a 1024-byte message 
using MD5 is timed at just 0.037 ms on a Pentium I11 730MHz machine 
running Linux. It is not a significant overhead to a router.) 

2. TIMEOUTS 

In the secret exchange protocol, we define two needed timeout values 
with two inputs te and tr. Input te is the time period between two successive 
secret exchanges between pe and qe. On one hand, this time period should 
be small so that an adversary does not have enough time to deduce the 
secrets sp and sq used in computing the integrity checks of data messages. 
On the other hand, it should be large so that the overhead that results from 
the secret exchanges is reduced. An acceptable value for te is around 4 
hours. 

Input tr is the timeout period for resending a rqst message when the last 
rqst message or the corresponding rply message was lost. The value of tr 
should be an upper bound on the round-trip delay between the two adjacent 
routers. If the two routers are connected by a high speed Ethernet, then an 
acceptable value of tr is around 4 seconds. 

3. SEQUENCE NUMBERS 

The sequence numbers in the strong integrity check protocol presented in 
Chapters 7 and 8 can be made recyclable. Note that the sequence numbers 
used in the strong integrity check protocol are specified as unbounded, for 
the simplicity of our presentation but without loss of generality. In practice, 
there is an upper bound on the sequence number, because we need to 
determine how many bits should be allocated to the sequence number field. 
However, two problems arise when bounded sequence numbers are used. 



Implementation Considerations 9 1 

First, the sequence number wraps around when it reaches the upper bound. 
At the instant that the sequence number wraps around, a smaller sequence 
number looks fresher than a greater sequence number. Thus, if the shared 
secret sq between process ps and process qs remains the same during the 
whole round of the sequence number, then when ps receives from qs a 
message whose sequence number just wraps around, it cannot distinguish 
whether the message is fresh or replayed from the last round. Second, the 
received sequence numbers may not be consecutive because messages may 
get lost in their transit. Thus, when process ps receives from process qs a 
message whose sequence number is smaller than the value of exp, there are 
two possibilities that process ps has to distinguish: either the message is a 
fresh message whose sequence number just wraps around (all the messages 
between the last one and this one are lost in transit), or the message is indeed 
a replayed message. 

The above two problems can be overcome if the following two 
requirements are satisfied. First, the shared secret is updated at least once 
during every round of the sequence number, such that an adversary cannot 
take any message in the last round and replay it in the current round. Second, 
the upper bound of the sequence number is chosen large enough, such that 
no loss of consecutive messages can confuse process ps on its judgment of a 
message's freshness. Assume that we choose S as the upper bound of 
sequence number, and te as the time period between two successive secret 
exchanges. Also assume that the maximum rate that messages can be 
transmitted in the network is R, and the maximum number of consecutive 
messages that can get lost in their transit over the network is L. Then the 
above two requirements can be translated into the following two formulas: 

In a usual Ethernet, at most 800 messages can be sent in a second. 
Therefore, in the period of 4 hours, which is the value we choose for timeout 
period te, at most 11,520,000 messages can be sent. Using 4 bytes to store 
the sequence numbers is a proper choice with considerations of covering the 
maximum number of consumed sequence numbers in timeout period te and 
aligning with the original IP header. 

As discussed in Chapter 7, input N, which is the upper bound for random 
integer cmax, needs to be much larger than 1. For example, if we choose N 
to be 200, then the maximum number of messages that can be discarded 
wrongly whenever synchronization between two adjacent routers is lost is 
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200, and the probability that an adversary who replays an old message will 
be detected is 99 percent. 

4. MESSAGE OVERHEAD 

The message overhead of the strong integrity check protocol is about 8 
bytes per data message: 4 bytes for storing the message digest, and 4 bytes 
for storing the sequence number of the message. 

We propose to add the message digest and sequence number used by the 
strong integrity check protocol to the IP options in the IP header of each 
message. IP options are auxiliary fields used mainly for network control or 
testing purposes. They are added at the tail of the standard 20-byte IP 
header, and the total length of all IP options in a message can be as much as 
40 bytes because the maximum length of IP header is 60 bytes. Special 
options for the message digest and sequence number can be defined and 
inserted into the IP options field of each message. 
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OTHER USES OF HOP INTEGRITY 

The three protocols in the hop integrity protocol suite, namely secure 
address resolution protocol, weak hop integrity protocol, and strong hop 
integrity protocol, can be used to counter most denial-of-service attacks, 
because they satisfy the three conditions of hop integrity and therefore can 
discard most denial-of-service attack messages at their first hops. What is 
even better, though, is that according to our investigation, we discovered that 
hop integrity can be used to solve other network security problems besides 
preventing denial-of-service attacks. 

In this chapter, we present four other applications of hop integrity. In 
Section 10.1, we present an application of hop integrity in the mechanism of 
mobile IP. In Section 10.2, we present an application of hop integrity in the 
mechanism of multicast. In Section 10.3, we discuss how to make routing 
protocols more secure. Finally in Section 10.4, we discuss an application of 
hop integrity to provide security for ad hoc networks and sensor networks. In 
each section, we first give an overview of the mechanism itself. Then, we 
discuss a network security problem that can disrupt this mechanism. Finally, 
we show how hop integrity can be used to solve the problem. 

MOBILE IP 

Mobile IP [41] is a mechanism designed to accommodate the 
communication need of mobile computers. According to IP version 4, the IP 
address of a computer uniquely identifies the computer's point of attachment 
to the Internet. Therefore, when a mobile computer visits a foreign 
subnetwork, this computer must change its IP address such that messages 
destined to this computer can be delivered to it. However, changing IP 
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address along with the change of location makes a computer lose its current 
transport and application layer connections, because higher-layer 
connections are dependent on the computer's IP address. Mobile IP provides 
the feature that a mobile computer can keep its IP address by registering a 
foreign agent in the foreign subnetwork with the home agent in its home 
subnetwork. The foreign agent registered by the mobile computer then 
works with the home agent to accomplish the delivery of IP messages 
destined to the mobile computer. 

According to mobile IP, while a mobile computer c is visiting a foreign 
subnetwork F, IP messages destined to mobile computer c are routed 
indirectly, and IP messages generated at mobile computer c are routed 
directly. The indirect routing of an IP message destined to c proceeds in 
three steps. First, the IP message is routed toward the home subnetwork H of 
c and is intercepted by the home agent ha of c in its home subnetwork H. 
Second, ha forwards the message in a tunnel to the foreign agent fa of c in 
the foreign subnetwork F. Third, fa forwards the IP message over F to 
mobile computer c. This procedure of indirect routing is illustrated in Figure 
10.1. 

(1 )  Message m destined to c mtercepted by ha 

(2) ha tunnles m to fa 

(3) fa forwards rn to c 

Figure 10-1. Indirect routing in mobile IP. 

The direct routing of an IP message generated at the mobile computer 
proceeds in two steps. First, mobile computer c forwards the IP message 
over the foreign subnetwork F to the foreign agent fa. Second, fa and all 
subsequent routers forward the IP message towards its intended ultimate 
destination. 

However, the aforementioned direct routing causes the following serious 
problem. When foreign agent fa forwards for mobile computer c a message 
m to next router q, q applies ingress filtering to m and discovers that the 
original source of m (namely mobile computer c) is not consistent with 
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where m came from (namely foreign agent fa). Thus, q ends up discarding m 
although m is a legitimate message. This problem is illustrated in Figure 
10.2. 

(1) c sends out message m via fa of c 

(2) fa forwards m to next router q 

(3) q discovers inconsistent source and 

discards m 

agent 

Figure 10-2. Problem with direct routing in mobile IP. 

In RFC 3024 [35], reverse tunneling for mobile IP was proposed to solve 
this problem. This scheme, designed to be symmetric to indirect routing on 
purpose, requires that every IP message generated at mobile computer c is 
first forwarded in a tunnel to the home agent ha of the mobile computer, and 
then routed toward its ultimate destination by home agent ha. When ha 
forwards a message m generated at the mobile computer to next router q', q' 
applies ingress filtering to m and discovers that the original source of m 
(namely mobile computer c) is consistent with where m came from (namely 
home agent ha). Thus, q' forwards m toward its ultimate destination as usual. 
However, one problem with reverse tunneling is that the cost of reverse 
tunneling is expensive. Every IP message generated at mobile computer c 
needs to unnecessarily travel all the way to home agent ha before it can be 
routed toward its ultimate destination, no matter where the ultimate 
destination is. Reverse tunneling can be illustrated as in Figure 10.3. 



9 6 Chapter 10 

--I-_- 

-- 
( I )  c sends out message m via fa 

(2) fa tunnels rn to ha 

(3) ha forwards m toward dest~natlon 

Figure 10-3. Reverse tunneling in mobile IP. 

We find that if hop integrity is deployed in all the routers of the network, 
then we can still use direct routing to route IP messages generated at mobile 
computer c toward their ultimate destinations, thereby avoiding the 
expensive cost of reverse tunneling. Recall that the problem with direct 
routing is that when next router q receives a message m generated at mobile 
computer c from foreign agent fa, q cannot determine from source address of 
m whether m is forwarded by fa, or m carries forged source address. 
However, if hop integrity is deployed in all the routers of the network, then 
foreign agent fa will add an integrity check d to message m before it 
forwards m to next router q. When next router q receives message m from fa, 
q can correctly determine from the integrity check d contained in m whether 
m was indeed forwarded by fa. If d is consistent with m, q accepts m, 
computes a new integrity check d for the next router, and proceeds to 
forward it toward its ultimate destination. Otherwise, if d is not consistent 
with m, then q discards m. Thus the problem with direct routing is solved. 
This procedure is illustrated in Figure 10.4. 
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(1) c sends out message m via fa 

(2) fa adds integrity check d to m and 

forwards m to next router q 

(3) q verifies d with m, computes new d. 

and forwards m toward destination 

Figure 10-4. Direct routing in mobile IP with hop integrity. 

2. SECURE MULTICAST 

Multicast IP [lo] is a mechanism designed to transmit an IP message to a 
set of zero or more hosts identified by a single IP destination address. Many 
multicast protocols have been proposed and widely deployed in the Internet 
to achieve multicast IP, for example the Distance Vector Multicast Routing 
Protocol (or DVMRP, for short) [53] and the Protocol Independent Multicast 
(PIM-DM for Dense Mode and PIM-SM for Sparse Mode) [ l  I]. Multicast 
protocols are based on organizing the routers between the multicast source 
and the multicast destinations into a rooted spanning tree. When a router in 
the spanning tree receives a multicast IP message, it forwards a copy of the 
message to every multicast destination that is adjacent to it and to every 
router that is its "child" in the spanning tree. Figure 10.5 illustrated an 
example of a multicast spanning tree. In this example, router r.0 forwards a 
copy of message m to its two children in the spanning tree, namely r.1 and 
r.2, and router r.1 forwards a copy of m to its child r.3 in the spanning tree 
and to a multicast destination that is adjacent to it. Other routers in the 
spanning tree proceed in a similar way to forward a copy of m to every 
multicast destination in the spanning tree. 
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routers 

destinations 

non-destinations 

Figure 10-5. A multicast spanning tree. 

Because IP messages can be lost while in transit, the multicast IP 
protocols do not guarantee that every multicast message generated at the 
multicast source is eventually received at every multicast destination. 
Instead, the multicast IP protocols guarantee the following weaker 
correctness criterion: if a multicast destination receives a multicast IP 
message, then each multicast destination receives the same message with 
high probability. 

However, this weak correctness criterion can still be violated by a simple 
adversary as follows. If the adversary inserts a new multicast IP message 
between two routers in the middle of the spanning tree, or modifies a 
message while the message is being transmitted between two routers in the 
middle of the spanning tree, then only a small fraction of the multicast 
destinations eventually receive the inserted or modified message. In an 
example illustrated in Figure 10.6, an adversary sitting between router r.1 
and router r.3 intercepts a message m forwarded by r.1 toward r.3, modifies 
m to become m', and forwards m' to r.3. Router r.3 accepts the modified 
message m' unsuspectingly, and forwards a copy of m' to the two multicast 
destinations that are adjacent to it. As a result, the above weak correctness 
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criterion is violated because only the two multicast destinations that are 
adjacent to r.3 eventually receives the modified message m'. 

I routers 

a destinations that receive 
modified message 

Figure 10-6. Corrcctncss criterion of multicast is violated by an adversary. 

We discover that hop integrity can be used to keep the above weak 
correctness criterion of multicast IP as follows. If hop integrity is deployed 
between each pair of adjacent routers in the spanning tree, then each pair of 
adjacent routers in the spanning tree share two unique secrets (one for each 
direction) that can be used to compute an integrity check for every message 
exchanged between this pair of routers. Therefore, every multicast IP 
message exchanged between any pair of adjacent routers in the spanning tree 
is protected by an integrity check added by the sending router. Because an 
adversary does not know the secret shared between two adjacent routers, this 
adversary cannot compute a correct integrity check for any multicast IP 
message it inserts or modifies no matter where it is located. As a result, the 
inserted or modified multicast IP messages will be detected and discarded by 
the first router that receives them. For example, as shown in Figure 10.7, 
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when router r.3 receives the modified message m', r.3 detects that m' is 
modified because its integrity check does not match m'. Thus r.3 discards m' 
and will not forward m' to any adjacent multicast destination. 

I routers 

destinations 

non-destinations 

Figure 10-7. IIop integrity keeps correctness criterion of multicast. 

Therefore, if hop integrity is deployed between each pair of adjacent 
routers in the spanning tree, then no multicast destination will receive the 
inserted or modified multicast IP messages, and the weak correctness 
criterion is maintained. 

3. SECURITY OF ROUTING PROTOCOLS 

Routers use routing protocols to compute the entire path or the next hop 
for forwarding a message toward its ultimate destination. Most widely used 
routing protocols, for example Routing Information Protocol (RIP for short) 
[18, 331, Open Shortest Path First (OSPF for short) [36], and Reservation 
Protocol (RSVP for short) [4], define their own routing messages that routers 
can use to exchange routing information with other routers on the network. 
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The protection of routing messages is important because routing messages 
carry routing information that is vital to the correctness of routing protocols. 
If routing messages are messed up by an adversary, the operation of routing 
protocols will be disrupted and normal data messages will not be correctly 
routed toward their ultimate destination. 

There have been a number of works on how to extend specific routing 
protocols to make them more secure. However, if strong hop integrity 
protocol is deployed in each pair of adjacent routers in a network, then 
without any other security mechanism added, any routing protocol that is 
used in the network gets secured. In the following three subsections, we 
discuss how strong hop integrity can be applied to enhance the security of 
RIP, OSPF, and RSVP. 

3.1 Security of RIP 

RIP [IS], which is shorthand for Routing Information Protocol, is a 
widely used routing protocol for IP-based networks. RIP allows a router to 
exchange routing information with its adjacent routers. It is a distance-vector 
protocol, which means that the routing information a router receives from an 
adjacent router is a vector of distances (measured in the number of hops) 
from the adjacent router to all possible destinations in the network. Each 
router then independently uses the routing information it receives from its 
adjacent routers to compute its best routes to all possible destinations in the 
network. (At the beginning of the execution of RIP, the routes computed by 
one router may not conform to those computed by another router, because 
initially a router does not have much routing information about the network. 
However, with the periodical update, routing information of each router will 
spread over the network and eventually the routes computed by different 
routers will converge to be consistent with each other.) 

There are two types of messages used in RIP, namely request and 
response messages. A router can send a request message to its adjacent 
routers to ask these routers to send back their current routing tables. A router 
that receives a request message is required to return a response message that 
contains its own routing table. Moreover, a router sends a response message 
to all its adjacent routers every 30 seconds. 

There is a security need for protecting the response messages that contain 
routing information in RIP. In the absence of any protection for response 
messages, an adversary sitting between two routers in the network can 
disrupt the network in several ways. First, the adversary can either insert a 
fake response message with incorrect routing information that it fabricates. 
Second, the adversary can modify a correct response message and make its 
routing information incorrect. Third, the adversary can also replay a previous 
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response message whose routing information is no longer correct. When a 
router receives a response message with incorrect routing information (from 
the adversary), it will unsuspectingly accept the message and use the 
incorrect routing information contained in the message to update its own 
routing table. Even worse, the router will send its routing table (incorrect 
now) to all adjacent routers. Consequently, the router may compute bad 
routes for destinations because of the false routing information it receives, 
and routing loops may be formed because of the spread of false routing 
information. 

The original RIP does not have any mechanism for authenticating the 
response messages. In RIP version 2 [33], a simple authentication 
mechanism is added to every response message in the protocol: a 16-byte 
clear text password is inserted in every response message. This 
authentication mechanism is easy, but cannot provide enough protection 
because the adversary can easily copy the password and use it in the fake 
response messages it inserts, or copy a response message and replay it later. 

By contrast, strong hop integrity can protect a network against the three 
attacks on RIP mentioned above. If strong hop integrity protocol is 
implemented in each pair of adjacent routers in a network, then each pair of 
adjacent routers in this network share two unique secrets (one for each 
direction) that can be used to compute an integrity check for every message 
exchanged between this pair of routers. Therefore, every RIP response 
message exchanged between any pair of adjacent routers in the network is 
protected by an integrity check and a (soft or hard) sequence number added 
by the sending router. If an adversary launches against the network the first 
attack or the second attack, namely inserting a fake RIP response message or 
modifying a correct RIP response message between any pair of adjacent 
routers, then the inserted or modified response message will be detected and 
discarded by the router that receives this message because the integrity 
check contained in this message is not correct. If an adversary launches 
against the network the third attack, namely replaying a previous RIP 
response message between any pair of adjacent routers, then the inserted or 
modified response message will be detected and discarded by the router that 
receives this message because the sequence number contained in this 
message is not correct. Therefore, strong hop integrity can secure RIP 
response messages, and can prevent an adversary from spreading false 
routing information over a network. 

3.2 Security of OSPF 

OSPF [36], which is shorthand for Open Shortest Path First, is another 
widely used routing protocol in the Internet. Unlike RIP, OSPF is a link-state 
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protocol, which means that each router gathers information on the state of its 
links to all adjacent routers and sends the link state information to all other 
routers in the network. The process that a router forwards to its adjacent 
routers every link state message it receives without change is called 
flooding. By periodical flooding, OSPF routers in the same network share a 
synchronized database that is consisted of link state records. These records 
represent the current topology of the network, and are used by OSPF routers 
to compute their best routes to destinations. 

OSPF protocol consists of three sub-protocols: Hello, Exchange, and 
Flooding protocols. The Hello protocol is used to check whether an adjacent 
router and the link connecting to that router are up or not. A link between 
two routers is considered up if messages can go in both directions. After 
establishing their two-way connectivity, two routers can use the Exchange 
protocol to achieve the initial synchronization of their link state database by 
exchanging database description messages. A link might change its state as 
time goes by. Therefore, the router that is responsible for a link whose state 
has changed needs to advertise the new state of the link to all other routers in 
the network. This is done by using Flooding protocol to send a link state 
update message to all other routers, and other routers who receive this 
message should send back an acknowledgment message so as to keep every 
router's link state database synchronized. 

The possible security threats faced by OSPF can be listed as follows. 
First, an adversary may insert a fake message that incorrectly advertises 
some link as the best route to other networks, so as to congest that link with 
high-volume misled traffic. Second, an adversary may modify a message 
that contains the state information of an important link, so that an area in the 
network might become unreachable. Third, an adversary may impersonate 
some router in a network and may insert a fake update message that requests 
all other routers to purge all link state records of the impersonated router. By 
repeating this trick, the adversary can slash the link state database in every 
router. 

We discover that hop integrity can be used to counter the three attacks 
mentioned above. If hop integrity is implemented in each pair of adjacent 
routers in a network, then each pair of adjacent routers in this network share 
two unique secrets (one for each direction) that can be used to compute an 
integrity check for every message exchanged between this pair of routers. 
Therefore, every hello message, every database description message, every 
update message, and every acknowledgment message exchanged between 
any pair of adjacent routers in the network is protected by an integrity check 
added by the sending router. If an adversary inserts or modifies any OSPF 
message between any pair of adjacent routers, then the inserted or modified 
OSPF message will be detected and discarded by the first router that receives 



104 Chapter 10 

this message because the integrity check contained in this message is not 
correct. Therefore, OSPF messages are secured by hop integrity and an 
adversary cannot use inserted or modified OSPF messages to mess up link 
state databases maintained by routers. 

3.3 Security of RSVP 

RSVP [4], which is shorthand of Reservation Protocol, is a resource 
reservation protocol designed for providing integrated services in the 
Internet. RSVP allows a host that wants to receive particular application data 
flows from a sending host to request from the network a specific degree of 
services in advance (although there is no guarantee that the requested service 
is available in the network). RSVP also allows a router to exchange service 
requests with other routers to establish and maintain state of the service it 
provides. Once the requested service is established, the host that requested 
the service is guaranteed that each router along the data path (between this 
host and the sending host) has reserved needed resources for the service the 
router promised to provide, and that the provided service will last till the end 
of the transmission of the data flow. 

There are two main types of messages used in RSVP, namely Resv and 
Path messages. Each sending host periodically sends a Path message to all 
receiving hosts for a data flow that this sending host generates. The Path 
message is designed to mark the path that is traveled by data messages. Each 
router along the data path maintains a state that remembers the previous 
router corresponding to this particular data flow. With the path information 
marked by Path messages, each receiving host is able to send Resv 
messages, which contain the reservation requests, toward the sending host. 
When receiving a Resv message, each router on the path determines how 
many resources it can grant to this reservation request, and relays the Resv 
message toward the sending host. 

The security issues concerned with RSVP are the integrity and 
authentication of service request messages. If an adversary spoofs the source 
address of a service request message, and the service request message is 
accepted by unsuspecting routers along the data path, then the adversary can 
steal the established service. If an adversary modifies the parameter of 
service specified in a service request message, or replays several service 
request messages and inserts them into the network, the normal service 
provided by the network may be severely reduced or totally denied. 

An extension to RSVP [2] provides a mechanism to protect RSVP 
messages against message modification, message spoofing, and message 
replay. The proposed scheme uses a secret shared between a pair of adjacent 
RSVP routers to compute a keyed cryptographic digest of a RSVP message, 
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and includes the digest as part of the RSVP message. However, a working 
key management protocol is missing in that proposal and manual key 
management may be necessary at its current stage. 

By contrast, if strong hop integrity along with ingress filtering is 
deployed in the network, then not only RSVP messages, but all other types 
of messages will also be protected against message modification, message 
spoofing, and message replay. Moreover, hop integrity is easier to manage 
because it updates shared secrets in a distributed way (by each pair of 
adjacent routers themselves). 

4. SECURITY IN AD HOC NETWORKS AND 
SENSOR NETWORKS 

Ad hoc networks and sensor networks are two new types of networks that 
have found many applications in today's world. Because of the ease and 
flexibility in their deployment, these types of networks are widely used in 
situations in which information exchange and/or aggregation is needed but 
communication infrastructure is unavailable, for example battlegrounds, 
disaster rescue sites, and construction sites. 

There are two common characteristics of ad hoc networks and sensor 
networks. First, the nodes in these networks communicate with each other 
through wireless media. Therefore, no infrastructure is needed for the 
deployment of these networks. Second, there is no dedicated router in these 
networks. Instead, each node in these networks also plays the role of a 
router, in that each node, when receiving a message not destined for it, will 
forward the message to a neighboring node that is closer to the ultimate 
destination. 

However, the ad hoc nature of these types of networks also makes them 
vulnerable to message insertion and message modification attacks as 
follows. If an adversary inserts a new message between two neighboring 
nodes, or arbitrarily modifies a message in transit, then the inserted or 
modified message will be forwarded by unwitting nodes that receive this 
message towards the ultimate destination. 

To counter the aforementioned attacks, a variation of hop integrity can be 
implemented in these types of networks as follows. Before the deployment, 
each node in an ad hoc network or a sensor network is loaded with a group 
secret that is only known to the nodes belonging to the network. If every 
transmitted message is appended with a piece of integrity check information 
computed using the group secret, then any inserted or modified message will 
be detected and discarded by a node that receives the message next. The 
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TinySec project conducted by Karlof et al. [3 11 also proposes a scheme that 
is similar to hop integrity. 
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