

HOP INTEGRITY
IN THE INTERNET

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems
George Mason University
Fairjiax, VA 22030-4444
email: jaiodia @gmu. edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:
BIOMETRIC USER AUTHENTICATION FOR IT SECURITY: From Fundamentals to
Handwriting by Claus Vielhauer; ISBN-10: 0-387-26194-X
IMPACTS AND RISK ASSESSMENT OF TECHNOLOGY FOR INTERNET
SECUR1TY:Enabled Information Small-Medium Enterprises (TEISMES) by Charles A.
Shoniregun; ISBN-10: 0-387-24343-7
SECURITY IN E-LEARNING by Edgar R. Weippl; ISBN: 0-387-24341-0
IMAGE AND VIDEO ENCRYPTION: From Digital Rights Management to Secured
Personal Communication by Andreas Uhl and Andreas Pommer; ISBN: 0-387-23402-0
INTRUSION DETECTION AND CORRELATION: Challenges and Solutions by
Christopher Kruegel, Fredrik Valeur and Giovanni Vigna; ISBN: 0-387-23398-9
THE AUSTIN PROTOCOL COMPILER by Tommy M. McGuire and Mohamed G. Gouda;
ISBN: 0-387-23227-3
ECONOMICS OF INFORMATION SECURITY by L. Jean Camp and Stephen Lewis;
ISBN: 1-4020-8089-1
PRIMALITY TESTING AND INTEGER FACTORIZATION IN PUBLIC KEY
CRYPTOGRAPHY by Song Y. Yan; ISBN: 1-4020-7649-5
SYNCHRONIZING E-SECURITY by Godfried B. Williams; ISBN: 1-4020-7646-0
INTRUSION DETECTION IN DISTRIBUTED SYSTEMS: An Abstraction-Based
Approach by Peng Ning, Sushil Jajodia and X. Sean Wang; ISBN: 1-4020-7624-X
SECURE ELECTRONIC VOTING edited by Dimitris A. Gritzalis; ISBN: 1-4020-7301-1
DISSEMINATING SECURITY UPDATES AT INTERNET SCALE by Jun Li, Peter
Reiher, Gerald J. Popek; ISBN: 1-4020-7305-4
SECURE ELECTRONIC VOTING by Dimitris A. Gritzalis; ISBN: 1-4020-7301-1

Additional information about this series can be obtained from
htt~://www.sprinp;eronline.com

HOP INTEGRITY
IN THE INTERNET

Chin-Tser Huang
University of South Carolina, USA

Mohamed G. Gouda
The University of Texas at Austin, USA

a - springer

Prof. Chin-Tser Huang Dr. Mohamed G. Gouda
University of Carolina University of Texas at Austin
Dept. of Computer Science & Eng. Dept. of Computer Sciences
Columbia SC 29208 Austin TX 78712-1 188

Library of Congress Control Number: 20059337 13

HOP INTEGRITY IN THE INTERNET
by Chin-Tser Huang and Mohamed G. Gouda

ISBN-1 3: 978-0-387-24426-6
ISBN- 10: 0-387-24426-3
e-ISBN- 13: 978-0-387-29444-5
e-ISBN- 10: 0-387-29444-9

Printed on acid-free paper.

O 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11053828,11570073

Dedication

To my wife Cindy and our son

Austin for their support.

C.-T. H.

To A. R. G. and M. E. G.

for many fond memories.

M. G. G.

Contents

Preface ix

Acknowledgments xi

Chapter 1 . Introduction 1

Chapter 2 . Abstract Protocol Notation 7
1 . PROCESSES AND CHANNELS ... 7
2 . CONSTANTS. VARIABLES. AND ACTIONS 8
3 . STATE TRANSITION DIAGRAM .. 11
4 . PROCESS ARRAYS. PARAMETERS. AND PARAMETERIZED

ACTIONS ... 14

Chapter 3 . Abstract Secure Protocols 17
1 . ASSUMPTIONS ABOUT THE ADVERSARY 18
2 . SECURITY KEYS .. 18
3 . MESSAGE DIGESTS ... 20
4 . NONCES .. 20
5 . TIMEOUT ACTIONS ... 21

6 . AN EXAMPLE PROTOCOL WITH SECURITY FEATURES 21

Chapter 4 . Denial-of-Service Attacks 25
1 . COMMUNICATION-STOPPING ATTACKS 26

2 . RESOURCE-EXHAUSTING ATTACKS .. 28

Chapter 5 . Secure Address Resolution Protocol 31
................ 1 . ARCHITECTURE OF SECURE ADDRESS RESOLUTION 3 1

...
V ~ I Hop Integrity in the Internet

2 . THE INVITE-ACCEPT PROTOCOL .. 35
3 . THE REQUEST-REPLY PROTOCOL ... 41

... 4 . EXTENSIONS 47
.. 4.1 Insecure Address Resolution 48

... 4.2 A Backup Server 53
... 4.3 System Diagnosis 54

... 4.4 Serving Multiple Ethernets 54

Chapter 6 . Weak Hop Integrity Protocol 55
1 . SECRET EXCHANGE PROTOCOL .. 56
2 . WEAK INTEGRITY CHECK PROTOCOL 62

Chapter 7 . Strong Hop Integrity Using Soft Sequence Numbers 67
I . SOFT SEQUENCE NUMBER PROTOCOL 67
2 . STRONG INTEGRITY CHECK PROTOCOL 70

Chapter 8 . Strong Hop Integrity Using Hard Sequence Numbers 75
1 . HARD SEQUENCE NUMBER PROTOCOL 76
2 . A PROTOCOL WITH SAVE AND FETCH OPERATIONS 78
3 . CONVERGENCE OF NEW HARD SEQUENCE NUMBER

PROTOCOL .. 83
4 . APPLICATION OF SAVE AND FETCH IN STRONG HOP

INTEGRITY PROTOCOL .. 86
5 . TRADEOFFS BETWEEN SOFT SEQUENCE NUMBERS AND

HARD SEQUENCE NUMBERS ... 86

Chapter 9 . Implementation Considerations 89
1 . KEYS AND SECRETS .. 89
2 . TIMEOUTS ... 90
3 . SEQUENCE NUMBERS ... 90
4 . MESSAGE OVERHEAD ... 92

Chapter 10 . Other Uses of Hop Integrity 93
1 . MOBILE IP .. 93
2 . SECURE MULTICAST ... 97
3 . SECURITY OF ROUTING PROTOCOLS 100

3.1 Security of RIP .. 1 0 1
3.2 Security of OSPF ... 1 0 2
3.3 Security of RSVP .. 1 0 4

4 . SECURITY IN AD HOC NETWORKS AND SENSOR NETWORKS 105

References 107

Index 111

Preface

The subject of this monograph is a proposal called "Hop Integrity"
intended to strengthen the security of the Internet against denial-of-service
attacks.

Hop integrity provides three important guarantees whenever a message m
makes one "hop" from a computer p to an adjacent computer q in the
Internet. (Note that each of the two computers p and q can be a host or a
router.) First, computer p does not send m (to q) unless it is certain that until
recently q was up and running. Second, if both p and q are routers, then upon
receiving message m, router q can check m and correctly conclude that m is
"fresh" and has been sent recently by router p. In this case, q accepts m and
proceeds to process it further. Third, if both p and q are routers and there is
an adversary that modifies m into m' or replaces m with an earlier message
m', then upon receiving message m', router q can check m' and conclude
correctly that m' is "modified" or "replayed". In this case, q discards m'.

The three guarantees of hop integrity constitute a defense against denial-
of-service attacks as follows. If a message my that is part of a denial-of-
service attack, is originated by an adversarial host in the Internet and if the
message header includes a wrong address for the originating host of m (in
order to hide the true source of the attack), then message m will be classified
as modified or replayed and will be discarded by the first router that receives
m in the Internet.

To provide (the three guarantees of) hop integrity, the address resolution
protocol of the Ethernet needs to be secured. Also, the IP header of each
message in the Internet needs to have a "message digest" and a "sequence
number". (The digest of a message is used by the receiving router to detect

x Preface

whether or not the message is modified, and the sequence number of a
message is used by the receiving router to detect whether or not the message
is replayed. If a router receives a message and detects that the message is
neither modified nor replayed, the router concludes correctly that the
message is fresh.)

Also to provide hop integrity, each pair of adjacent routers p and q in the
Internet need to share two security keys K and L. Router p uses key K to
compute the digest of each message that p sends to q and uses key L to
validate the digest of each message that p receives from q. Similarly, router
q uses key L to compute the digest of each message that q sends to p and
uses key K to validate the digest of each message that q receives from p. To
enhance the security of their shared keys, each pair of adjacent routers need
to update their shared keys regularly and relatively frequently, and so they
use a light-weight key update protocol to update their shared keys.

In this monograph, a suite of protocols for providing hop integrity in the
Internet is discussed in great detail. In particular, each protocol in this suite
is specified and verified using an abstract and formal notation, called the
Secure Protocol Notation. This notation is a variation of the Abstract
Protocol Notation in the textbook "Elements of Network Protocol Design",
written by the second author, Mohamed G. Gouda.

This monograph is primarily directed towards designers, reviewers,
verifiers, and implementers of secure network protocols. It is also directed
towards graduate students who are interested in network security and secure
protocols.

Finally, the authors wish to thank their friends and colleagues in the
Department of Computer Science and Engineering at the University of South
Carolina at Columbia and in the Department of Computer Sciences at the
University of Texas at Austin. The encouragement of our colleagues made
this monograph possible.

Acknowledgments

We would like to thank Mootaz Elnozahy, Vijay Garg, Simon S. Lam,
Aloysius K. Mok, and Tommy M. McGuire for their suggestions which have
improved this monograph.

We also would like to thank several individuals in the Department of
Computer Sciences at the University of Texas at Austin for many
discussions concerning the subject of this monograph. These individuals are
Eunjin (EJ) Jung, Alex X. Liu, Young-Ri Choi, and Hung-Ming Chen.

We also would like to thank several individuals in the Department of
Computer Science and Engineering at the University of South Carolina at
Columbia for many discussions centered on "Hop Integrity" and its potential
role in improving the Security of the Internet. These individuals are Duncan
Buell, Manton Matthews, Csilla Farkas, and Srihari Nelakuditi.

Chin-Tser Huang
Columbia, South Carolina

Mohamed G. Gouda
Austin, Texas

Chapter 1

INTRODUCTION

A network consists of computers connected to subnetworks. Examples of
subnetworks include local area networks, telephone lines, and satellite links.
The computers in a network are classified into hosts and routers. It is
assumed that each host in a network is connected to one subnetwork, and
each router is connected to two or more subnetworks via distinct interfaces.

Two computers in a network are called adjacent if both computers are
connected to the same subnetwork. Two adjacent computers in a network
can exchange messages over the common subnetwork(s) to which they are
both connected. Two computers that are not adjacent to each other in a
network can exchange messages through the help of intermediate routers as
follows. Assume a message m is to be transmitted from a computer s to a
faraway computer d in the same network. First, message m is forwarded in
one hop from computer s to a router r.1 adjacent to s. Second, message m is
forwarded in one hop from router r. 1 to router r.2 adjacent to r. 1, and so on.
Finally, message m is forwarded in one hop from a router r.n that is adjacent
to computer d to computer d.

Today, most computer networks in the Internet suffer from the following
security problem. In a typical network, an adversary, that has an access to
the network, can insert new messages, modify current messages, or replay
old messages in the network. In many cases, the inserted, modified, or
replayed messages can go undetected for some time until they cause severe
damage to the network. More importantly, the physical location in the
network where the adversary inserts new messages, modifies current
messages, or replays old messages may never be determined.

One type of such malicious attacks is called denial-of-service attack [5],
which manages to exhaust the communicating resources of a network or the
computing resources of a host in order to largely reduce or completely deny

2 Chapter I

normal services provided by a network or a host. Two well-known examples
of denial-of-service attacks in networks that support the Internet Protocol (or
IP, for short) and the Transmission Control Protocol (or TCP, for short) are
as follows.

I. Smurf Attack:
In an IP network, any computer can send a "ping" message to any other

computer which replies by sending back a "pong" message to the first
computer as required by Internet Control Message Protocol (or ICMP, for
short) [43]. The ultimate destination in the pong message is the same as the
original source in the ping message. An adversary can utilize these messages
to attack a computer d in such a network as follows. First, the adversary
inserts into the network a ping message whose original source is computer d
and whose ultimate destination is a multicast address for every computer in
the network. Second, a copy of the inserted ping message is sent to every
computer in the network. Third, every computer in the network replies to its
ping message by sending a pong message to computer d. Thus, computer d is
flooded by pong messages that it had not requested.

11. SYN Attack:
To establish a TCP connection between two computers c and d, one of

the two computers c sends a " S Y N message to the other computer d. When
d receives the SYN message, it reserves some of its resources for the
expected connection and sends a "SYN-ACK message to c. When c
receives the SYN-ACK message, it replies by sending back an "ACK"
message to d. If d receives the ACK message, the connection is fully
established and the two computers can start exchanging their data messages
over the established connection. On the other hand, if d does not receive the
ACK message for a specified time period of T seconds after it has sent the
SYN-ACK message, d discards the partially established connection and
releases all the resources reserved for that connection. The net effect of this
scenario is that computer d has lost some of its resources for T seconds. An
adversary can take advantage of such a scenario to attack computer d as
follows [5, 511. First, the adversary inserts into the network successive
waves of SYN messages whose original sources are different (so that these
messages cannot be easily detected and filtered out from the network) and
whose ultimate destination is d. Second, d receives the SYN messages,
reserves its resources for the expected connections, replies by sending SYN-
ACK messages, then waits for the corresponding ACK messages which will
never arrive. Third, the net effect of each wave of inserted SYN messages is
that computer d loses all its resources for T seconds.

Introduction 3

In these (and other [24]) types of attacks, an adversary inserts into a
network messages with wrong original sources. These messages are accepted
and forwarded by unsuspecting routers toward the computer under attack. To
counter these attacks, each router p in the network should route a received
message m only after it checks that the original source in m is a computer
adjacent to p or m is forwarded to p by an adjacent router q. Performing the
first check is straightforward, whereas performing the second check requires
special protocols between adjacent routers. Filling in this void is the goal of
this monograph.

In this monograph, we present the concept of hop integrity between
adjacent routers as discussed in [14, 15, 191, and present the three protocols
in the hop integrity protocol suite that are aimed to counter the
aforementioned attacks and strengthen the security of the Internet. The basic
idea of hop integrity is straightforward: whenever a router p receives a
message m from an adjacent router q, p should be able to determine whether
m was indeed sent by q or it was modified or replayed by an adversary that
operates between p and q.

Next, we discuss the requirements of hop integrity. A network is said to
provide hop integrity iff the following three conditions hold for every pair of
adjacent routers p and q in the network.

I. Detection of Next-Hop Failure:
Router p does not send any message m to router q over the subnetwork

connecting p and q unless router q has been up and reachable shortly before
m is sent.

11. Detection of Message Modification:
Whenever router q receives a message m over the subnetwork connecting

routers p and q, q can determine correctly whether message m was modified
by an adversary after it was sent by p and before it was received by q.

111. Detection of Message Replay:
Whenever router q receives a message m over the subnetwork connecting

routers p and q, and determines that message m was not modified, then q can
determine correctly whether message m is another copy of a message that is
received earlier by q.

The first condition infers sending integrity, in which a sender does not
send a message to the receiver of the message unless the sender is sure the
receiver has been up and reachable shortly before. The second and third
conditions infer receiving integrity, in which whenever a receiver receives a
message from a sender, the receiver can verify whether m was indeed sent
by the sender or it was modified or replayed by an adversary that operates

4 Chapter I

between the receiver and the sender. Note that the sender and the receiver
referred to in our presentation of hop integrity are one hop away from each
other, i.e. they are connected to the same subnetwork.

For a network to provide hop integrity, we propose that the hop integrity
protocol suite needs to be added to the protocol stack in each router in the
network. The hop integrity protocol suite consists of the following three
protocols:

I . Secure Address Resolution Protocol:
Secure address resolution protocol can detect next-hop failure. This

protocol can be used to counter denial-of-service attacks that involve ARP
spoofing [45, 521.

11. Weak Hop Integrity Protocol:
Weak hop integrity protocol can detect message modification. This

protocol can be used to overcome denial-of-service attacks that involve
message modification and do not involve message replay.

111. Strong Hop Integrity Protocol:
Strong hop integrity protocol is an enhanced version of weak hop

integrity protocol in that besides detecting message modification, this
protocol can also detect message replay. This protocol can be used to
overcome denial-of-service attacks that involve message modification or
message replay.

As discussed in [7] and [46], the protocol stack of each router (or host) in
a network consists of four protocol layers. They are (from bottom to top): the
subnetwork layer, the network layer, the transport layer, and the application
layer. The secure address resolution protocol needs to be added to the
subnetwork layer of this protocol stack, whereas the weak hop integrity
protocol and the strong hop integrity protocol need to be added to the
network layer.

Note that these proposed protocols are based on the following two
assumptions:

I. Local Area Network Assumption:
The proposed protocols are based on local area networks, in particular

Ethernets.

11. Secure Router Assumption:
The routers in the network and the software used by them are assumed to

be secure and so they cannot be compromised by any adversary.

Introduction 5

An adversary who wants to attack the network can compromise any
group of hosts in the network and can cause them to execute actions on
behalf of the adversary. However, under the Secure Router Assumption, the
protocols of our hop integrity protocol suite can detect and defeat the
adversarial actions.

It is instructive to compare hop integrity with secure routing [6, 37, 471,
traceback [3, 48, 491, and IPsec [26]. In secure routing, for example [6],
[37], and [47], the routing update messages that routers exchange are
authenticated. This authentication ensures that every routing update
message, that is modified or replayed, is detected and discarded. By contrast,
hop integrity ensures that all messages (whether data or routing update
messages), that are modified or replayed, are detected and discarded.

The purpose of traceback is for the destination under attack to reconstruct
the path traversed by the attacking messages, so as to identify the real
origin(s) of the messages responsible for the attack. Two schemes have been
proposed to achieve traceback: message marking scheme [3, 491 and hash-
based scheme [48]. In message marking scheme, when a router r receives a
message m, it sends the traceback information, namely the pair (r, m), to the
ultimate destination of the message. The traceback information for a
message m is either sent in the ID field of IP header of message m itself [49]
or sent in a separate ICMP message [3]. Due to the overhead incurred by
sending traceback information, both Bellovin and Savage employ
probabilistic methods rather than applying their methods to every message.
In hash-based scheme, when a router r receives a message m, r stores the
traceback information (r, m) in a hash table for some (relatively short) time.
In these two schemes, a denial-of-service attack has to proceed for some
time before the ultimate destination that is under the attack can detect the
attack sources, if at all, and block them. In other words, these are detection-
and-resolution schemes. By contrast, hop integrity is a prevention scheme.
An attacking message, usually with a false source address, will be detected
and discarded in its first hop. Thus, denial-of-service attacks will be
prevented before they start.

The hop integrity protocol suite introduced in this monograph and the
IPsec protocol suite presented in [26], [27], [28], [38], and [40] are both
intended to provide security at the network layer. Nevertheless, these two
protocol suites provide different, and somewhat complementary, services.
On one hand, the hop integrity protocols are to be executed at all routers in a
network, and they provide a minimum level of security for all
communications between adjacent routers in that network. On the other
hand, the IPsec protocols are to be executed at selected pairs of computers in
the network, and they provide sophisticated levels of security for the
communications between these selected computer pairs. Clearly, one can

6 Chapter I

envision networks where the hop integrity protocol suite and the IPsec
protocol suite are both supported. When operating hand in hand, the hop
integrity protocol suite can provide router authentication, router-to-router
message integrity, and determination of the adversary location when the
network is under attack, whereas the IPsec protocol suite can support source
authentication, end-to-end message integrity, and confidentiality.

The rest of this monograph is organized as follows. In Chapter 2, we
introduce the Abstract Protocol Notation that we use to specify all protocols
in this monograph. In Chapter 3, we introduce more features of the AP
notation that can be used to specify secure network protocols. In Chapter 4,
we define denial-of-service attacks and discuss the role and use of hop
integrity in countering these attacks. In the next four chapters, we introduce
the three components of hop integrity protocol suite in order. First, in
Chapter 5 we present a secure address resolution protocol that can achieve
detection of next-hop failure. Second, in Chapter 6 we present the weak hop
integrity protocol that can achieve detection of message modification. Third,
in Chapters 7 and 8 we present the strong hop integrity protocol that can
achieve detection of message replay in addition to achieving detection of
message modification. In Chapter 7, we present the strong hop integrity
protocol using soft sequence numbers, and in Chapter 8, we present a
variation of the strong hop integrity protocol using hard sequence numbers.
In Chapter 9, we discuss implementation considerations of hop integrity.
Finally in Chapter 10, we illustrate four other applications of hop integrity
besides overcoming most denial-of-service attacks.

Chapter 2

ABSTRACT PROTOCOL NOTATION

It is useful to specify network protocols using a formal notation. First, by
using a formal notation to specify a network protocol, one can formally
verify the correctness of this protocol and check that the protocol performs
the function that it is intended to perform. Second, formal specification and
verification is particularly important for secure network protocols. To verify
the security guarantees of a protocol, one cannot depend only on some
testing of the protocol because the tester may omit cases where
vulnerabilities or weaknesses occur in the protocol. This is why we decided
to specify all the secure protocols in this manuscript using a formal notation.

In this chapter, we present a variation of the Abstract Protocol Notation
that is introduced in [13]. We use this variation to specify all the protocols
presented in this manuscript.

The remainder of this chapter is organized as follows. In Section 2.1, we
introduce the concept of processes and channels. In Section 2.2, we
introduce the components of a process, namely constants, variables, and
actions. In Section 2.3, we introduce the state transition diagram of a
protocol, which is our tool to verify the correctness of the protocol. In
Section 2.4, we introduce three more features of the AP notation, namely
process arrays, parameters, and parameterized actions, that are used in our
presentation.

1. PROCESSES AND CHANNELS

A protocol is defined by a collection of processes, and the channels
between these processes. Processes in a protocol need to communicate with
other processes in the same protocol by sending messages to and receiving

Chapter 2

messages from the other processes. A message has a name (or a type) and
can have zero or more fields that carry values to be used by the message
receiver.

A message is transported from a sending process p to a receiving process
q via the channel from p to q. The channel from p to q is the place where a
message stays after it is sent by p and before it is received by q or before it is
lost. Between each pair of adjacent processes p and q, there are two
unidirectional channels: one from p to q, and the other from q to p.

Every channel in a protocol is both unbounded and FIFO (first-in, first-
out). The unboundedness property means that an unbounded number of
messages can reside simultaneously in a channel. The FIFO property means
that messages are received from a channel in the same order in which they
were sent into the channel. Messages that reside simultaneously in a channel
form a sequence <m. 1; m.2; . . .; m.k> in accordance with the order in which
messages m. I , m.2, . . ., m.k have been sent by the sending process. The head
message in the sequence, m. 1, is the earliest sent, and the tail message in the
sequence, m.k, is the latest sent. When the receiving process is ready to
receive a message, it removes the head message, namely m.1, from the
sequence. In this case, and the next message, namely m.2, becomes the next
head message in the sequence, and so on. Therefore messages are to be
received in the same order in which they were sent.

CONSTANTS, VARIABLES, AND ACTIONS

A process in a protocol is defined by a set of constants, a set of variables,
and a set of actions. The protocol performs its designated function by
executing the actions in its processes. In the next section, we explain how
the actions in a process are executed. In this section, we discuss the
constants, variables, and actions of a process.

A constant of a process has a name and a value, and can be one of the
following four types: boolean, integer, range, and array. The constants of a
process can be read but not updated by the actions of this process. Thus, the
value of each constant of a process is either fixed or is updated by another
process outside the protocol.

A variable of a process has a name and a value, and can be one of the
following four types: boolean, integer, range, and array. The variables of a
process can be read and updated by the actions of this process.

An action of a process consists of a guard, an arrow "+", and a
statement:

Abstract Protocol Notation 9

The <guard> of an action is of one of the following two types: a local guard
or a receiving guard.

A local guard is a boolean expression that involves the constants and
variables of the process in which the local guard occurs.

A receiving guard is of the form:

rcv <message> from <process name>

A <statemenP of an action is of one of the following six types: skip,
assignment, send, selection, iteration, and sequence. Next, we describe the
six types of statement and how to execute each of them.

A skip statement is of the form:

skip

The skip statement is executed by doing nothing.
An assignment statement is of the form:

where v is a variable of the process in which the assignment statement
occurs, and E is an expression of the same type as v. The assignment
statement is executed by assigning the current value of E to variable v.

A send statement is of the form:

send <message> to <name of another process>

This statement is executed by sending a message of the specified type to the
specified process.

A selection statement is of the form:

This statement is executed by first computing the current value of each
<boolean expression>, then arbitrarily selecting one <boolean expression>
whose value is true and executing its corresponding <statement>.

An iteration statement is of the form:

This statement is executed by repeatedly computing the value of the
<boolean expression> and then executing the <statement> when the value of
the <boolean expression> is true. Execution of this statement terminates
when the <boolean expression> becomes false.

10 Chapter 2

A sequence statement is of the form:

This statement is executed by first executing the first <statement> and then
executing the second <statement>.

Next, we use an example to illustrate the use of constants, variables, and
actions. The following protocol consists of two processes p and q. In this
protocol, process p can send a request message to process q, and then wait
for a reply message from q before p can send the next request message to q.
Process p can be specified as follows.

process p
var ready : boolean {init. ready=true)

txt, t : integer
begin

ready +
txt := any;
send rqst(txt) to q;
ready := false

[I rcv rply(t) from q +
{use text t in received message)
ready := true

end

Process p has three variables: variable ready is used to remember whether
process p is waiting for a rply message from process q or not, variable txt is
used for keeping the content of the latest rqst message process p sends to
process q, and variable t is used for keeping the content of the latest rply
message process p receives from process q. There are two actions in process
p. In the first action, if the value of ready is true, then p chooses a new value
for txt, sends a rqst(txt) message to process q, and sets the value of ready to
false. In the second action, if p receives a message rply(t) from q, then p sets
the value of ready to true.

When process q receives a request message from process p, q returns a
reply message to p. Process q can be specified as follows.

process q
var t : integer
begin

rcv rqst(t) from p +
t := any;

Abstract Protocol Notation 11

send rply(t) to p
end

Process q has one variable t, which is used for keeping the content of the
latest message that process q receives from or sends to process p. There is
one action in process q: if q receives a rqst(t) message from p, then q
chooses a new value for t, and returns a rply(t) message to p.

3. STATE TRANSITION DIAGRAM

A state of a protocol is defined by one value for each constant and one
value for each variable in each process in the protocol and by one sequence
of messages for each channel in the protocol.

An action in a process p in a protocol is enabled at a state S of the
protocol iff one of the following two conditions holds at S: the guard of the
action is a local guard, or the guard is a receiving guard of the form rcv m
from q and the head message in the channel from process q to process p is m
at state S.

If one or more actions in the same process or in different processes in a
protocol are enabled at a state S, then exactly one of the enabled actions is
executed, yielding a next state Sf of the protocol. Likewise, if one or more
actions are enabled at state Sf, then exactly one of the enabled actions is
executed, yielding a next state S", and so on. An execution of a protocol
may terminate when the protocol reaches a "deadlock state", where no action
is enabled. If a protocol never reaches a deadlock state, then an execution of
this protocol can continue endlessly.

Executing the actions (of different processes) in a protocol proceeds
according to the following three rules:

I. Atomicily:
The actions in a protocol are executed one at a time.

11. Nondeterminism:
An action is executed only when its guard is true.

111. Fairness:
An action whose guard is continuously true is eventually executed.

To construct a state transition diagram of a protocol, we have to derive
all the possible states that can be reached by the protocol. The derivation of
reachable states begins with an initial state in which every constant and
every variable is assigned an initial value and every channel in the network

Chapter 2

is empty. Then, all the actions that are enabled at this state are identified.
Execution of each of these enabled actions at the current state leads the
network to a different next state. This procedure is continued at each of the
next states until a deadlock state is reached or a previous state is reached.

After we derive all the reachable states of a protocol, we can draw the
corresponding state transition diagram. In a state transition diagram, each
node represents one network state, and each arrow fiom a node S to another
node S' represents an action execution that leads the network from state S to
state S'.

Next, we use the protocol defined in the last section as an example for
illustrating the construction of a state transition diagram. Assume that this
network of process p and process q starts at a state defined by the following
protocol predicate S.O.

S.0 : ready A txt = x A t.p = y A t.q = z A

ch.p.q = < > A ch.q.p = < >

The first conjunct in S.0 asserts that variable ready in process p has the
value true. The next three conjuncts assert that txt in process p has the value
x, t in process p has the value y, and t in process q has the value z. The last
two conjuncts assert that the two channels between processes p and q are
empty.

At state S.0, exactly one action, namely the first action in process p, is
enabled. Executing this action at state S.0 leads the network to the following
state S. 1.

At state S.l, only the sole action in process q is enabled. Assume that
process q chooses a random value z' for its variable t when executing this
action at state S.1. Thus the network is led to the following state S.2.

At state S.2, only the second action in process p is enabled. Executing
this action at S.2 leads the network to the following state S.3.

S.3 : ready A txt = x A t.p = z' A t.q = z' A

ch.p.q = < > A ch.q.p = < >

At state S.3, only the first action in process p is enabled. Assume that
process p chooses a random value x' for its variable txt when executing this
action at state S.3. Thus the network is led to the following state S.4.

S.4 : -ready A txt = x' A t.p = z' A t.q = z' A

Abstract Protocol Notation 13

It turns out that this protocol has an infinite number of reachable states,
because in each round process p chooses a new value for its variable txt
before sending a message rqst(txt) to process q, and process q chooses a new
value for its variable t before sending a message rply(t) to process p.
Therefore, it is impossible to draw the corresponding state transition diagram
in full.

To solve this problem, the definition of a state transition diagram for a
protocol can be generalized as follows. Instead of each node in the diagram
representing only one state of the protocol, some nodes in the diagram can
be aggregated under a broader protocol predicate into one node that
represents a nonempty subset of the protocol states.

For example, the initial state S.0 of this protocol can be found in an
aggregated state that is defined by the following protocol predicate T.O.

T.0 : ready A ch.p.q = < > A ch.q.p = < >

State S.l can be found in an aggregated state that is defined by the
following protocol predicate T. 1.

State S.2 can be found in an aggregated state that is defined by the
following protocol predicate T.2.

Similarly, state S.3 can be found in the aggregated state defined by T.0,
state S.4 can be found in the aggregated state defined by T. 1, and so on.

We derive the following three inductions regarding the three aggregated
states T.0, T.1, and T.2. First, at a state defined by T.0, only the first action
in process p is enabled, and executing this action at a state defined by T.0
leads the protocol to a state defined by T. 1. Second, at a state defined by T.l,
only the sole action in process q is enabled, and executing this action at a
state defined by T.l leads the protocol to a state defined by T.2. Third, at a
state defined by T.2, only the second action in process p is enabled, and
executing this action at a state defined by T.2 leads the protocol to a state
defined by T.O. Therefore, the sequence of transitions from T.0 to T.1, from
T.l to T.2, and from T.2 to T.0 forms a cycle in which the network performs
progress. In this case, a state transition diagram for the protocol can be
drawn as shown in Figure 2.1.

Chapter 2

Figure 2-1. A state transition diagram for the example protocol.

4. PROCESS ARRAYS, PARAMETERS, AND
PARAMETERIZED ACTIONS

In this section, we introduce two extensions of the AP notation. First, we
introduce process arrays which allow one to define a set of identical
processes by defining only one representative process. Second, we introduce
parameters and parameterized actions which allow one to define a finite set
of actions as a single parameterized action in a process.

A process array is a finite set of processes: each of them has the same set
of constants, the same set of variables, and the same set of actions. Thus, all
the processes in a process array can be specified by specifying only one
representative process of the array. For example, let p be an array of n
processes named p[O], p[l], . . . , p[n-l] respectively. A representative process
of this array can be p[i], where i is an index whose value is in the range
between 0 and n- 1.

A parameter has a name and is of type range. This implies that each
parameter has a finite number of values.

A parameterized action is an action that refers to one or more parameters.
A parameterized action is a shorthand notation for a finite set of actions:
each of them can be obtained from the parameterized action by first selecting
for each parameter i in the parameterized action a value v.i from the domain
of i, and then replacing every occurrence of i in the parameterized action by
the selected value v.i.

Next, we extend the example shown in Section 2.2 to illustrate the use of
process arrays, parameters, and parameterized actions. In the extended
example, process p communicates with an array of n processes q[i: 0 .. n-11.

Abstract Protocol Notation 15

In this protocol, process p can send a request message to any process q[i],
and then wait for a reply message from q[i] before p can send the next
request message to the same q[i]. While process p is waiting for a reply
message from q[i], p can send a request message to any other process q[il]
that is different from q[i], provided that p is not waiting for a reply message
from q[il]. Process p in the extended protocol can be specified as follows.

process p
const n : integer {number of processes in process array q)
var ready : array [O .. n-I] of boolean {init. ready=true)

txt, t : integer
par I : 0 .. n-1
begin

ready[i] +
txt := any;
send rqst(txt) to q[i];
ready[i] := false

[I rcv rply(t) from q[i] -+
{use text t in received message)
ready[i] := true

end

Process p in the extended protocol has one constant n, which specifies the
number of processes in process array q, and one parameter i, which stands
for the index of process array q. Variable ready in process p is changed to an
array of n booleans to remember whether process p is waiting for a rply
message from each of the n processes in process array q or not. Both actions
in process p are parameterized actions; each action is a shorthand notation of
n actions as there are n possible values for parameter i. In the first
parameterized action, if the value of ready[i] is true, then p chooses a new
value for txt, sends a rqst(txt) message to process q[i], and sets the value of
ready[i] to false. In the second parameterized action, if p receives a message
rply(t) from q[i], then p sets the value of ready[i] to true.

Next, we specify process array q in the extended protocol as follows.
Each new process q[i], when receiving a request message from p, will return
a reply message to p. As discussed previously in this section, we can specify
process array q by specifying one representative process q[i] in the array.

process q[i : 0 .. n-1]
const n : integer {number of processes in process array q)
var t : integer

Chapter 2

begin
rcv rqst(t) from p +

t := any;
send rply(t) to p

end

Each process q[i] has one new constant n, which is the same as the
constant n in the new process p. There is one action in process q[i]: if q[i]
receives a rqst(t) message from p, then q[i] chooses a new value for t, and
returns a rply(t) message to p.

Chapter 3

ABSTRACT SECURE PROTOCOLS

We have presented in Chapter 2 the basic features of the Abstract
Protocol notation, and the state transition diagram of a protocol. In this
chapter, we proceed to introduce more features of this AP notation. These
features can be used to specify secure network protocols that can encounter
adversarial attacks.

This chapter is organized as follows. In Section 3.1, we specify four
types of adversarial actions, namely message snooping, message
modification, message replay, and message loss, that an adversary can
execute to disrupt the communications between any two processes in a
protocol. In the next four sections, we introduce four security features of the
AP notation and discuss how these features can be used to counter the four
types of adversarial actions. In Section 3.2, we introduce the concept of
security key, and discuss how to use security keys to counter message
snooping actions. In Section 3.3, we introduce the concept of a message
digest and discuss how to use message digests to counter message
modifications. In Section 3.4, we introduce the concept of a nonce and
discuss how to use nonces to counter message replays. In Section 3.5, we
introduce timeout actions and discuss how to use these actions to counter
message losses. Finally in Section 3.6, we use an example protocol to
illustrate the use of security keys, message digests, nonces, and timeout
actions.

18 Chapter 3

1. ASSUMPTIONS ABOUT THE ADVERSARY

We assume that an adversary exists between any two processes p and q in
a protocol. We also assume that this adversary can disrupt the
communication between p and q by executing the following four types of
actions, a finite number of times each.

I. Message Snooping:
The adversary can snoop on the messages exchanged between processes

p and q by making a copy of each head message in each channel between p
and q.

11 Message Modzjication :
The adversary can arbitrarily modify the content of the head message in

one of the two channels between p and q according to the following
restriction. Suppose a message has n fields f.0, f.l, f.2, . .., f.(n-1) that satisfy
a relationship f.0 = F(f.1, f.2, . . ., f.(n-1)) where F is a "security function".
After the message is arbitrarily modified by the adversary, the n fields f.O1,
f.l', f.2', . . ., f.(n-1)' of the modified message no longer satisfy the previous
relationship, i.e. f.0' # F(f. l', f.2', . . . , f.(n-1)').

111. Message Replay:
The adversary can replace the head message in one of the two channels

between p and q by a copy of a message that is of the same type and was
sent earlier.

IV. Message Loss:
The adversary can discard a message by removing the head message

from one of the two channels between p and q.

For simplicity, we assume that each head message in one of the two
channels between p and q is affected by at most one.adversaria1 action.

2. SECURITY KEYS

We assume that each key is a non-negative integer. We also assume that
each data item is a non-negative integer and vice versa. Therefore, each key
is also a data item.

We assume the existence of an appropriate encryption function NCR and
an appropriate decryption function DCR. Each of these two functions takes a
key and a data item as arguments and produces a data item as a result. Let K
be a key and d be a data item. Then, the data item NCR(K, d) is called the

Abstract Secure Protocols 19

encryption of data item d using key K and the data item DCR(K, d) is called
the decryption of data item d using key K.

A pair of keys (K, L) is called secure iff the following three conditions
hold:

I. Restoration:
For every data item d,

d = DCR(L, NCR(K, d)), and
d = DCR(K, NCR(L, d)).

11. Hiding:
For every key K' other than K and every key L' other than L, there is a

data item d such that
d # DCR(L1, NCR(K, d)), and
d # DCR(Kt, NCR(L, d)).

111. Secrecy:
If K = L, then there is no efficient algorithm to deduce L from the set of

data items {NCR(K, d) I d is a data item). If K # L, then there is no efficient
algorithm to deduce L from K.

A secure key pair (K, L) is called asymmetric iff K # L, and is called
symmetric iff K = L.

For an asymmetric secure key pair (K, L) that belongs to a process p in a
network, one key K is called apublic key of process p and is denoted as Bp,
while the other key L is called a private key of process p and is denoted as
Rp. The public key B, is known to every process in the network and the
adversary, while the private key Rp is only known to process p.

For a symmetric secure key pair (K, K) that belongs to a process pair p
and q in a network, key K is called a shared key of processes p and q and is
denoted as S (, ,). The shared key S { , ,) is known to processes p and q only.

An asymmetric secure key pair (B,, R,) can be used to counter snooping
on the messages from a process q to process p as follows. For q to send p a
message msg(txt), with one field txt that should be kept confidential, q
computes

t := NCR(Bp, txt)

and sends a message msg(t) instead. When p receives msg(t), p recovers txt
from t by computing

txt := DCR(Rp, t)

A symmetric secure key S (, ,I can be used to counter snooping on the
messages exchanged between processes p and q as follows. For q to send p a

20 Chapter 3

message msg(txt), with one field txt that should be kept confidential, q
computes

and sends p a message msg(t) instead. When p receives msg(t), p recovers
txt from t by computing

txt := DCR(S{, ,), t)

3. MESSAGE DIGESTS

A message digest function MD is a function that computes for any data
item d a fixed-length data item MD(d) such that the following condition is
satisfied.

Finger Printing: There is no efficient algorithm that computes, for any
data item d, another data item d' such that MD(d) = MD(dr).

Common message digest functions include MD5 [44], SHA [39], or
HMAC [29].

Message digests can be used to counter message modification actions as
follows. Assume that a message msg(txt) is to be sent from a process p to
another process q. Assume also that p and q share a secret S. Before p sends
q the message, p computes an integrity check d for this message as follows:

where MD is a message digest function, and "txt; S" is a concatenation of
the txt field and the shared secret. Then p adds d to the message and sends q
a message msg(txt, d) instead. If the message is arbitrarily modified in its
transit to become msg(txtr, dr), then q can detect the modification by
computing MD(txtr; S) and checking that dr is not equal to MD(txtr; S).

4. NONCES

A nonce is a non-negative integer, and so each nonce is also a data item.
During the execution of a security protocol, each process in the protocol can
generate a nonce by executing a function NONCE.

The sequence of nonces generated by a process satisfies the following
two conditions:

Abstract Secure Protocols 2 1

I. Non-repetition: The value of a generated nonce is different from the
values of all previously generated nonces in the sequence.

11. Unpredictability: The value of a generated nonce cannot be deduced
from the values of all previously generated nonces in the sequence.

Nonces can be used to counter message replay actions as follows.
Assume that a message msg(txt) that requires a reply is to be sent from a
process p to another process q. Before p sends this message to q, p adds a
nonce nc to the message and sends q a message msg(txt, nc) instead. When q
receives the message and prepares a reply, q adds the same nonce nc to the
reply. Finally, when p receives the reply and checks that the nonce is the
same as that in the original message, it concludes correctly that neither the
original message nor the reply was replaced by earlier messages.

5. TIMEOUT ACTIONS

A timeout action is an action that begins with a timeout guard. A timeout
guard is of the form:

timeout <time expression>

The <time expression> is a boolean expression that involves the
constants and variables of the process in which the timeout guard occurs. It
can also refer to a time period that has passed since some action of the
process has executed. This implies that each process has a real-time clock.
The clocks in different processes do not need to be synchronized, but they
have the same rate.

Timeout actions can be used to counter message loss actions as follows.
If a process p sends a message to another process q and does not receive
from q a reply for this message for a relatively long time, then p executes a
timeout action to send q another copy of the same message or another
message.

6. AN EXAMPLE PROTOCOL WITH SECURITY
FEATURES

In this section, we extend the example shown in Section 2.2 to illustrate
the use of security keys, message digests, nonces, and timeout actions.
Recall that in the example protocol in Section 2.2, process p can send a
request message to process q, and then wait for a reply message from q

22 Chapter 3

before p can send the next request message to q. However, that protocol does
not provide any security features introduced in this chapter. Therefore, it is
vulnerable to the message snooping actions, message modification actions,
message replay actions, and message loss actions executed by an adversary.

We extend this protocol to counter the four types of actions by an
adversary as follows. In the extended protocol, we assume that each of
processes p and q has an asymmetric secure key pair, and that p and q share
a secret. The following four changes are made on the protocol. First, to
counter message snooping actions, the text field of each message is
encrypted using the public key of the receiving process. Second, to counter
message replay action, a nonce is attached to each message. Third, to
counter a message modification action, a message digest computed using the
concatenation of the nonce, the message text, and the shared secret is
attached to each message. Fourth, to counter message loss actions, p
executes a timeout action to resend the same request message to q if p
detects that a request message is lost in transit. Process p in the extended
protocol can be specified as follows.

process p
const Rp : integer {private key of p)

Bq : integer {public key of q)
S : integer {shared secret between p and q)

var ready : boolean {init. ready=true)
nc, c : integer {nonce)
txt, t : integer {text)
d : integer {message digest)

begin
ready -+

txt := any;
send rqst(nc, NCR(B,, txt), MD(nc; txt; S)) to q;
ready := false

[I rcv rply(c, t, d) from q -+
t := DCR(Rp, t);
if - ready A nc = c A MD(nc; t; S) = d -+

{use decrypted text t in received message)
ready := true

[I ready v nc # c v MD(nc; t; S) # d -+
{discard received message)
skip

fi

Abstract Secure Protocols

[I timeout (-ready A #ch.p.q + #ch.q.p = 0) +
send rqst(nc, NCR(B,, txt), MD(nc; txt; S)) to q

end

Process p in the extended protocol has one constant Rp, B,, and S, and
three new variables nc, c, and d. Constant Rp is the private key of p, and
constant B, is the public key of q. Constant S specifies the shared secret
between process p and process q. Variable nc specifies a nonce chosen for a
new request message, variable c is used for keeping the value of the nonce in
the last received reply message, and variable d is used for keeping the value
of the message digest in the last received reply message. There are three
actions in process p. In the first action, if the value of ready is true, then p
randomly chooses a value for txt, sends a rqst(nc, txt, MD(nc; txt; S))
message to process q, and sets the value of ready to false. In the second
action, if p receives a message rply(c, t, d) from q, then p verifies that c is
equal to the last used nonce nc, and d is equal to the message digest MD(nc;
t; S). If so, p sets the value of ready to true; otherwise p discards the received
message and skips. The third action is a timeout action. In this action, if the
value of ready is false and the number of messages that are currently in both
the channel from p to q and the channel from q to p is 0 (which is an
indication that the sent request message is lost in transit), then p resend the
request message rqst(nc, NCR(B,, txt), MD(nc; txt; S)) to q.

Next, we specify process q in the extended protocol as follows. The new
process q, when receiving a request message from p, will first decrypt the
text and verify that the received message was not modified in transit, and
then return a reply message to p. Process q in the extended protocol can be
specified as follows.

process q
const % : integer {private key of q)

Bp : integer {public key of p)
S : integer {shared secret between p and q)

var c : integer {nonce)
t : integer {text)
d : integer {message digest)

begin
rcv rqst(c, t, d) from p +

t := DCR(%, t);
if MD(c; t; S) = d +

t := any;
d := MD(c; t; S);
t := NCR(Bp, t);

Chapter 3

send rply(c, t, d) to p
[I MD(c; t; S) # d -+

{discard received message)
skip

fi
end

Process q in the extended protocol has three constants &, B,, and S, and
two new variables c and d. Constant & is the private key of q that
corresponds to the public key B, known to p, and constant B, is the public
key of p that corresponds to the private key Rp owned by p. Constant S is the
same as the constant S in p. Variable c is used for keeping the value of the
nonce in the last received request message, and variable d is used for
keeping the value of the message digest in the last received request message.
There is one action in process q: if q receives a rqst(c, t, d) message from p,
then q decrypts t using its private key &, and verifies that the message was
not modified in transit. If so, q chooses an arbitrary value for t, computes an
integrity check d, encrypts t using p's public key B,, and returns a rply(c, t,
d) message to p; otherwise q discards the received message and skips.

Chapter 4

DENIAL-OF-SERVICE ATTACKS

A series of denial-of-service attacks that occurred in the past few years
have caused severe problems to many Internet Service Providers (ISP) and
online services, and have also posed new challenges to network security
experts. According to a survey conducted by Computer Security Institute
(CSI) and Federal Bureau of Investigation (FBI), the estimated financial
losses caused by denial-of-service attacks amounted to more than $65M in
the year of 2003 and more than $26M in the year of 2004 [54].

Most of the success of denial-of-service attacks can be attributed to the
two-sided nature of these attacks: they are quite easy to launch but extremely
hard to defend against. Denial-of-service attacks are easy to launch because
generating messages of these attacks takes as few as just one computer and
some handy tools that can be downloaded from the Internet. They are hard to
defend against because the messages generated by denial-of-service attacks
are almost indistinguishable from those normal messages generated by
legitimate users.

The aim of denial-of-service attacks is to largely reduce or completely
deny normal services provided by a network or a host. According to the
ways these attacks achieve their goal, denial-of-service attacks can be
divided into two categories [45]. The first category is called communication-
stopping attacks: attacks in this category stop the communication of the
target host with the outside world, for example ARP spoofing attack. The
second category is called resource-exhausting attacks: attacks in this
category exhaust the communicating resources of the target network or the
computing resources of the target host, for example Smurf attack, SYN
attack, and distributed denial-of-service attack. In this chapter, we discuss
how the attacks in each of the two categories prevail, and why hop integrity
is needed to counter these attacks.

26 Chapter 4

COMMUNICATION-STOPPING ATTACKS

In this type of attacks, an adversary manages to stop the communications
between the target host and the outside world, such that the target host
cannot get normal services provided by the outside world, and the outside
world cannot get normal services provided by the target host. ARP spoofing
attack [45, 521 is an attack that is often used to achieve this goal.

We first give an introduction to ARP before we discuss the mechanism
and defenses of ARP spoofing attack. The Address Resolution Protocol [42],
or ARP for short, is a protocol for mapping an IP address to a hardware
address that is recognized in the local network, in particular an Ethernet. To
illustrate the operation of ARP, consider the following scenario in which a
network consists of n computers h[O], h[l], . . . , h[n-11. These n computers
are connected to the same Ethernet. Before any computer h[i] can send a
message m to any other computer hlj] in this network, h[i] needs to obtain
the hardware address of hlj]. This can be accomplished using ARP as
follows. First, the ARP process in h[i] broadcasts a rqst(ipa) message over
the Ethernet to every other computer in the network, where ipa is the IP
address of the destination computer hlj]. Second, when the ARP process in
any computer other than hlj] receives the rqst(ipa) message, it detects that
ipa is not its own IP address and discards the message. Third, when the ARP
process in computer hlj] receives the rqst(ipa) message, it detects that ipa is
its own IP address, and sends a rply(ipa, hda) message over the Ethernet to
computer h[i], where hda is the required hardware address of computer hlj].
When computer h[i] receives the rply(ipa, hda) message, it attaches hda to
message m, sends m(hda) over the Ethernet to computer hlj], and keeps this
mapping of ipa and hda (of computer hlj]) in an ARP cache for some time.
Next time, if computer h[i] wants to send another message m' to computer
hlj], h[i] first checks its ARP cache to see whether the entry of hljl's ipa and
hda has expired. If the entry has not expired yet, h[i] sends mr(hda) over the
Ethernet to hlj]. Otherwise, h[i] repeats the process described above to
obtain the hardware address of hlj].

This scenario demonstrates that there are three functions for ARP:

I. Resolving IP Addresses:
Using ARP, each computer can obtain the hardware address of any

other computer (using the IP address of that other computer) on the same
Ethernet.

11. Supporting Dynamic Assignment of Addresses:
ARP can be used to resolve the IP addresses of computers on the

same Ethernet even if the IP addresses assigned to these computers

Denial-of-Service Attach 27

change over time. For example, consider the case where a mobile
computer visits an Ethernet. In this case, the mobile computer can be
assigned a temporary IP address through some configuration protocol
like DHCP [9]. Then, the other computers on the Ethernet can use ARP
to resolve this temporary IP address to the hardware address of the
mobile computer, and so can send messages to that computer.

111. Detecting Destination Failures:
Consider the case where a computer h[i] needs to resolve the IP

address ipa of another computer hlj] on the same Ethernet. Computer h[i]
broadcasts a rqst(ipa) message over the Ethernet. If hlj] happens to be
down at this time, then no rply(ipa, hda) message will be returned to h[i]
and h[i] will not send an m(hda) message over the Ethernet. Thus, ARP
ensures that no m(hda) message is sent over the Ethernet unless the
destination computer of this message has been up shortly before m(hda)
is sent.

The simplicity of ARP has made it widely used in the Internet.
Unfortunately, this simplicity makes ARP vulnerable to two types of
spoofing attacks. To describe these two types of ARP spoofing attack,
consider a scenario where an adversary computer h[k], which is on the same
Ethernet as computer h[i], wants to stop the communication of h[i] with the
outside world. Thus, h[k] sends forged ARP reply messages to poison the
ARP caches of h[i] and all other computers on the Ethernet. There are two
cases to consider.

I. Stopping Inbound Trafflc:
In this case, h[k] sends to all the computers of the Ethernet except

h[i] a spoofed rply(ipa, hda), in which ipa is the IP address of h[i], and
hda is a nonexistent hardware address. Every computer that receives this
spoofed rply(ipa, hda) message caches this nonexistent hda for h[i], and
as a result, all future messages destined for h[i] will not be delivered to
h[i].

11. Stopping Outbound Trafflc:
In this case, h[k] sends to h[i] a spoofed rply(ipa, hda), in which ipa

is the IP address of the default router of the Ethernet, and hda is the
hardware address of h[k]. Once computer h[iIys cache is poisoned by this
spoofed rply(ida, hda), all future outbound messages of computer h[i] are
delivered to h[k] rather than to the default router. (The adversary h[k] can
also forward these outbound messages of h[i] to the default router after it
reads them. This constitutes a man-in-the-middle attack [52].)

2 8 Chapter 4

In both cases, the adversary h[k] poisons the ARP caches of other
computers such that the real next-hop destinations of their messages become
unreachable. Therefore, the Detection of Next-Hop Failure condition of hop
integrity is violated in this network.

In order to counter these ARP spoofing attacks two solutions have been
proposed recently. In one solution, a tool called ARPWATCH [32] is
proposed to monitor the activities over the Ethernet (such as the transmission
of rqst(ipa) and rply(ipa, hda) messages over the Ethernet) and check these
activities against a database of (IP address, hardware address) pairings. In
another solution, permanent entries for trusted hosts [I, 5 11 are permanently
stored in the ARP caches in all computers on the Ethernet, so that rqst(ipa)
and rply(ipa, hda) messages are not sent over the Ethernet and ARP spoofing
is prevented. Both of these solutions suffer from some problems.
ARPWATCH supports two functions of ARP, namely resolving IP addresses
and detecting destination failures, but it does not support the dynamic
assignment of IP addresses. In the case of permanent entries for trusted
hosts, detecting destination failures and dynamically assigning addresses are
not supported. Moreover, neither of the two solutions can overcome
transmission inducement attack as discussed in [16].

By contrast, our secure address resolution protocol, which will be
presented in Chapter 5, can support all the three functions of ARP, and can
defeat both ARP spoofing attack and transmission inducement attack.

2. RESOURCE-EXHAUSTING ATTACKS

Most known denial-of-service attacks belong to the fashion of exhausting
the resources of the target systems. In this type of attacks, an adversary
sends successive huge waves of messages to the target host in order to
exhaust its computing resources and the bandwidth of its connection link.
Smurf attack and SYN attack, as described in Chapter 1, both belong to this
type.

A common characteristic of attacks of this type is that messages inserted
by the adversary carry wrong original sources. However, adversaries of these
attacks put wrong original sources in their attacking messages for different
reasons. In Smurf attack, the original source that an adversary puts in the
ping messages is the IP address of the target host, such that each computer
that receives a copy of this ping message sends a pong message to the target
host. In SYN attack, the original sources that an adversary puts in the SYN
messages are IP addresses of hosts that are either down or unreachable at
present. This is because if the original sources in these attacking SYN
messages belong to some up and reachable hosts, then these hosts will

Denial-of-Service Attacks 29

receive a SYN-ACK message from the target host, and will return a RESET
message to the target host so as to inform it that they did not send any SYN
message to the target host before. As a result, the target host is able to
release the resources that were reserved for the expected connections and
foil the attack. Moreover, an adversary of any denial-of-service attack tends
to put a forged source address in its attacking messages, such that the
identity and location of the adversary will not be easily determined.

The recent years have seen the emergence of distributed denial-of-service
attack [45], an even nastier type of denial-of-service attacks. This attack is
called "distributed" because an adversary does not send out the attacking
messages by itself. Instead, the adversary intrudes a multitude of unprotected
hosts over the Internet and installs its attacking software in these unprotected
hosts. These intruded hosts are called "zombies". The adversary can launch
an attack against a computer d on the Internet as follows. First, the adversary
sends a command to all the zombies at the same time to initiate the software
it installed in the zombies previously. Second, after receiving the command
from the adversary, each zombie launches a denial-of-service attack, for
example Smurf attack or SYN attack, against computer d. As a result,
computer d is flooded by messages from all the zombies.

In order to curb this type of denial-of-service attacks that involve
messages with wrong original sources, Ferguson and Senie proposed a
technique called ingress filtering [12]. Using ingress filtering, each router
checks whether the recorded source in each received message is consistent
with the subnetwork from which the router received the message. (A router
is connected to two or more subnetworks. It can determine which
subnetwork a message comes from by the incoming interface of the
message.) When a router receives a message, there are two cases for the
router to consider: the received message is from a subnetwork with no other
router connected to it, or the received message is from a subnetwork with
one or more adjacent routers.

If the received message is from a subnetwork with no other router
connected to it, then the router checks if the recorded message source is
consistent with the address prefix of the subnetwork. If so, then the message
is supposedly from a host on that subnetwork and the router forwards the
message as usual. Otherwise, the router discards the message. Therefore, if
an adversary inserts messages with forged sources into a subnetwork with
only one router connected to it, then these inserted messages will be detected
and discarded by ingress filtering.

However, if the received message is from a subnetwork with one or more
adjacent routers, the situation is more complex. If the router finds that the
recorded source of the received message is not consistent with the address
prefix of the subnetwork from which the message is received, then there are

30 Chapter 4

two possible cases to consider: either the message is forwarded by an
adjacent router, or the message is inserted by a host that is connected to the
subnetwork and is compromised by an adversary. (An adversary may try to
insert its messages with forged sources through a compromised host on the
subnetwork, hoping to convince the receiving router that this message is
forwarded by an adjacent router.) Ingress filtering cannot distinguish the
above two cases, therefore it is not effective in stopping denial-of-service
attacks that insert messages into a subnetwork with two or more routers.

In order for a network to counter such denial-of-service attacks that insert
messages with forged sources into a subnetwork with two or more routers,
the network needs to satisfy the second condition of hop integrity: Detection
of Message Modification. That is, whenever a router q on the network
receives a message m supposedly from an adjacent router p, router q can
correctly determine whether message m was modified or inserted by an
adversary. Our weak hop integrity protocol and strong hop integrity
protocol, which will be presented in Chapters 6 and 7, can detect message
modification, and therefore can detect and discard the messages inserted by
an adversary.

Chapter 5

SECURE ADDRESS RESOLUTION PROTOCOL

In this chapter, we present the secure address resolution protocol. The
secure address resolution protocol requires a secure server connected to the
Ethernet, and consists of two sub-protocols: an invite-accept protocol and a
request-reply protocol.

This chapter is organized as follows. In Section 5.1, we introduce the
architecture of secure address resolution, and show that this architecture can
counter ARP spoofing attacks discussed in Section 4.1. Then, in Sections 5.2
and 5.3, we present the invite-accept protocol and the request-reply protocol
respectively. Finally, we discuss four extensions to the secure address
resolution protocol in Section 5.4.

1. ARCHITECTURE OF SECURE ADDRESS
RESOLUTION

To perform secure address resolution in an Ethernet, a secure server s is
added to the Ethernet. Then, every communication concerning address
resolution in this Ethernet is either from s to some computer in the Ethernet,
or from some computer in the Ethernet to s.

The secure address resolution protocol between s and a computer h[i] in
the Ethernet consists of two sub-protocols: the invite-accept protocol and the
request-reply protocol. The function of the invite-accept protocol is to allow
the secure server s to invite the different computers in the Ethernet to
register, periodically and securely, their IP addresses and hardware addresses
in the secure server. The function of the request-reply protocol is to allow
each computer in the Ethernet to request the secure server s to resolve an IP
address of some other computer in the same Ethernet to its hardware

3 2 Chapter 5

address. As shown in Figure 5.1, the invite-accept protocol is between
process sn in server s and process hn[i] in computer h[i], and the request-
reply protocol is between process sr in server s and process hr[i] in computer

Applications
Transport
Network

Subnetwork

Interface
I

I Applications

1 I Subnetwork

I Interface

I

.write arrays
ipa, hda, valid

Figure 5-1. Architecture of secure address resolution.

Ethernet

Both the invite-accept protocol and the request-reply protocol are
designed to tolerate the actions of any adversary that happens to be on the
Ethernet. We assume that an adversary can perform the following three types
of actions a finite number of times to disrupt the communications between
server s and any computer h[i] on the Ethernet.

I

I . MessageLoss:
After a message is sent (by a process in s or h[i]), the message is

discarded by the adversary, and is never received (by the intended process in
h[i] or s, respectively).

11. Message Modzjkation:
After a message is sent and before it is received, the message fields are

arbitrarily modified by the adversary.

111. Message Replay:
After a message is sent and before it is received, the message is replaced

by a copy of an earlier message of the same type by the adversary.

Note that by executing a sequence of these adversarial actions, the
adversary can launch the ARP spoofing attacks presented in Section 2.1. Let

Secure Address Resolution Protocol 3 3

us consider again the scenario where an adversary computer h[k], which is
on the same Ethernet as its target computer h[i], wants to stop the
communication of h[i] with the outside world. First, in order to stop the
inbound traffic of h[i], h[k] modifies some ARP reply messages that are
destined to all the computers of the Ethernet except h[i] such that the
modified ARP reply messages become rply(ipa, hda), in which ipa is the IP
address of h[i], and hda is a nonexistent hardware address. Also, h[k]
discards a finite number of ARP reply messages that contain the IP address
and the correct hardware address of h[i]. The net effect is that every
computer that receives the spoofed rply(ipa, hda) message caches this
nonexistent hda for h[i] for some time, and as a result, all messages destined
for h[i] will not be delivered to h[i] for some time. Second, in order to stop
the outbound traffic of h[i], h[k] modifies an ARP reply message destined to
h[i] such that the message becomes rply(ipa, hda), in which ipa is the IP
address of the default router of the Ethernet, and hda is the hardware address
of h[k]. Also, h[k] discards a finite number of ARP reply messages that
contain the IP address and the correct hardware address of the default router
of the Ethernet. Once computer h[i]'s cache is poisoned by this spoofed
rply(ida, hda), all future outbound messages of computer h[i] are delivered
to h[k] rather than to the default router until the poison entry in h[i]'s cache
expires.

Next, we illustrate how our secure address resolution architecture
counters the adversarial actions. In our design, the invite-accept protocol and
the request-reply protocol use the following three mechanisms to tolerate the
three types of adversarial actions:

I. Timeout Actions to Counter Message Loss:
If a process (in s or h[i]) sends a message and does not receive a reply for

this message for a relatively long time, the process times out and sends
another copy of the same message or sends another message.

11. Shared Secrets to Counter Message ModiJication:
Server s shares a unique secret scr[i] with each computer h[i] on the

Ethernet. This secret is used to compute a piece of integrity check
information to be added to each message that is sent between s and h[i]. For
example, assume that a message acpt(c, ip, hd), with three fields c, ip, and
hd, is to be sent between s and h[i]. Then an integrity check d for this
message can be computed as follows:

d := MD(c; ip; hd; scr[i])

where MD is a message digest function, and "c; ip; hd; scr[i]" is a
concatenation of the three message fields and the shared secret. This

3 4 Chapter 5

integrity check d is added to the message, to become acpt(c, ip, hd, d),
before sending it so that if the message fields are arbitrarily modified (by the
adversary) to become acpt(c1, ip', hd', dl), then d' is no loger equal to MD(cl;
ip'; hd'; scr[i]). Thus, arbitrarily modifying the fields of a message can be
detected by the message receiver.

Note that shared secrets used by the protocols in our secure address
resolution architecture are based on the following assumption: Every
computer on the Ethernet has secure access to the secret it shares with the
secure server and does not reveal the shared secret to any other computer on
this Ethernet. Otherwise, if an adversary gets to know the secret shared
between server s and computer h[i] on the Ethernet, then this adversary can
impersonate h[i] to communicate with s, or it can impersonate s to
communicate with h[i], and messages sent from the adversary to s or h[i]
will not be detected.

111. Nonces to Counter Message Replay:
Before a process (in s or h[i]) sends a message that requires a reply to

another process (in h[i] or s, respectively), the sending process attaches to
the message a unique integer nc, called the message nonce. When the
receiving process receives the message and prepares a reply, it attaches the
message nonce nc to the reply. Finally, when the sending process receives
the reply and checks that the message nonce is the same as that in the
original message, it concludes correctly that neither the original message nor
the reply were replaced by earlier messages (by the adversary).

We argue that ARP spoofing attack cannot succeed under our secure
address resolution architecture. Note that using our secure address resolution
architecture, all messages regarding address resolution are exchanged
between server s and computer h[i], rather than between computer h[i] and
other computers on the Ethernet. Therefore, in order to launch an ARP
spoofing attack against computer h[i], adversary h[k] has to try to modify
address resolution messages between s and h[i]. However, the attempt by
h[k] will not succeed because of the following two reasons. First, each
message of the invite-accept protocol between s and h[i] is protected by an
integrity check computed using the secret shared between s and h[i]. Thus,
h[k] cannot poison the hardware address of h[i] stored in server s because
h[k] does not know the secret shared between s and h[i]. Second, each
message of the request-reply protocol between s and h[i] is protected by an
integrity check computed using the secret shared between s and h[i]. Thus,
h[k] cannot fool h[i] by sending h[i] a forged reply message because h[k]
does not know the secret shared between s and h[i].

Secure Address Resolution Protocol 3 5

In the next two sections, we describe in some detail the two protocols:
the invite-accept protocol and the request-reply protocol, and discuss their
correctness proofs.

2. THE INVITE-ACCEPT PROTOCOL

The invite-accept protocol consists of process sn in server s and every
process hn[i] in computer h[i]. Process sn shares a unique secret scr[i] with
every process hn[i], and it stores the shared secrets in a constant array scr[O
.. n-I]. This array is defined as a constant in process sn because the actions
of sn can read this array but cannot update it. (The initial shared secret of a
host can be assigned to this host along with its IP address when the host is
added to the Ethernet. The shared secret can be renewed once in a long
period, for example a month.)

Process sn also maintains three variable arrays ipa[O .. n-11, hda[O .. 11-11,
and valid[O .. n-11. Array ipa[O .. 11-11 and array hda[O .. n-1] are used to
record the IP addresses and hardware addresses of all computers on the
Ethernet. Array valid[O .. n-1] is the validity count for the entries in arrays
ipa[O .. n-1] and hda[O .. n-11. When sn writes ipa[i] and hda[i], valid[i] is
assigned its highest possible value vmax. Periodically, sn decrements
valid[i] by one. If the value of valid[i] ever becomes zero, then the current
values of ipa[i] and hda[i] are no longer valid.

There are two types of messages in the invite-accept protocol: invite and
accept messages. The invite messages are sent from process sn to every
process hn[i], whereas the accept messages are sent from every process hn[i]
to process sn. Every T seconds, process sn sends an invite message to every
process hn[i]. Then every hn[i] replies by sending an accept message to s.

Each invite message is of the form invt(nc, md), where nc is the unique
nonce of the message and md is a list md[O], . . . , md[n-l] of message
digests. Before sending an invt(nc, md) msg, process sn computes a unique
value for nc, and computes every md[i] as follows:

nc := NONCE;
for every i, 0 I i < n, md[i] := MD(nc; scr[i])

where NONCE is a function that when invoked returns a fresh nonce.
When a process hn[i] receives an invt(nc, md) message, it computes the

value MD(nc; sc) and compares the computed value with the received value
md[i] in the message. If they are equal, then hn[i] concludes correctly that
this message was indeed sent by sn, and sends an accept message to sn.
Otherwise, hn[i] discards the received invite message.

3 6 Chapter 5

Each accept message, sent by a process hn[i], is of the form acpt(c, x, y,
d), where c is the message nonce that hn[i] found in the last received invite
message, x is the IP address of hn[i], y is the hardware address of hn[i], and
d is the message digest computed by hn[i] as follows:

d := MD(c; x; y; sc)

where sc is the secret that h[i] shares with server s.
When process sn receives an acpt(c, x, y, d) message from a process

hn[i], it checks that c equals the nonce nc in the last invite message sent by
sn and that d is a correct digest for the accept message. If so, sn concludes
correctly that the accept message was indeed sent by hn[i] and stores x in
ipa[i] and stores y in hda[i]. Otherwise, sn discards the accept message.
Process sn can be defined as follows.

process sn
const scr : array [0 .. n-I] of integer {shared secrets)

T : integer {T 2 round trip delay between)
{sn and each hn[i])

vmax : integer
var ipa : array [O .. n-I] of integer

hda : array [O .. n-I] of integer
valid : array [0 .. n-I] of 0 .. vmax
md : array [O .. n-I] of integer
nc, c, d : integer
X, Y : integer
j : O..n

par 1 : 0 .. n-1
begin

timeout (T seconds passed since this action executed last) -+
nc := NONCE;
j := 0;
doj < n +

mdu] := MD(nc; scr[j]);
validti] := max(0, validu] - 1);
j : = j + 1

od;
send invt(nc, md) to hn

[I rcv acpt(c, x, y, d) from hn[i] -+
if c = nc A d = MD(c; x; y; scr[i]) +

ipa[i] := x;
hda[i] := y;

Secure Address Resolution Protocol

valid[i] := vmax
[I c # nc v d # MD(c; x; y; scr[i]) +

{discard message)
skip

fi
end

Process sn has two actions. In the first action, sn broadcasts an invite
message to every process hn[i] on the Ethernet every T seconds. In the
second action, process sn receives an accept message from a process hn[i],
checks that the message is correct, and if so, it stores the IP address and
hardware address contained in the accept message in ipa[i] and hda[i].

Note that when sn broadcasts an invite message, it decrements the value
of every valid[i] by one, and when sn receives an accept message from hn[i]
and checks that the message is correct, it resets the value of valid[i] to vmax.
Thus, if sn does not receive any accept message from hn[i] for vmax * T
seconds, then valid[i] becomes 0 in sn.

Process hn[i] stores the secret it shares with process sn in a constant
named sc. (Thus, the value of sc in hn[i] equals the value of scr[i] in sn.)
Process hn[i] has two other constants, namely ip and hd, that stores the IP
address and the hardware address of computer h[i], respectively. Process
hn[i] can be defined as follows.

process hn[i : 0 .. n-1]
const sc : integer {sc in hn[i] = scr[i] in sn)

ip, hd : integer
var e : array [O .. n-1] of integer

c, d : integer
begin

rcv invt(c, e) from sn +
d := MD(c; sc);
if d = e[i] +

d := MD(c; ip; hd; sc);
send acpt(c, ip, hd, d) to sn

[I d # e[i] +
{discard message)
skip

ti
end

To verify the correctness of the invite-accept protocol, we can use the
state transition diagram of this protocol in Figure 5.2. This diagram has

3 8 Chapter 5

seven nodes that represent all possible reachable states of the protocol. Every
transition in the diagram stands for either a legitimate action (of process sn
or process hn[i]), or an illegitimate action of the adversary.

S.2 = ch.sn.hn[i] = < > A

ch.hn[i].sn = <acpt(c, x, y, d)> A c = nc A d = MD(c; x; y; sc)

M' = ch.sn.hn[i] = < > A

ch.hn[i].sn = <acpt(c, x, y, d)> A d + MD(c; x; y; sc)

Figure 5-2. State transition diagram of the invite-accept protocol.

Secure Address Resolution Protocol 3 9

For convenience, each transition is labeled by the message event that is
executed during the transition. In particular, each transition has a label of the
form

where <event type> is one of the following:

S stands for sending a message of the specified type
R stands for receiving and accepting a message of the specified type
D stands for receiving and discarding a message of the specified type
L stands for losing a message of the specified type
M stands for modifying a message of the specified type
P stands for replaying a message of the specified type

Initially, the network starts at a state S.0 where the two channels between
processes sn and hn[i] are empty. This state can be defined by the following
predicate

At state S.0, exactly one action, namely the timeout action in process sn,
is enabled for execution. Executing this action at state S.0 leads the network
to state S. 1 defined as follows.

Note that in state S.l, the channel from process sn to process hn[i] has
only one message: invt(c, e), where the following three conditions hold.
First, the value of field c in the message equals the value of variable nc in sn.
Second, the ith element in array e in the message equals the ith element in
array md in sn. Third, the ih element in array e equals the message digest of
the concatenation of the value of field c and the ith element in array scr in sn.

At state S.1, exactly one legitimate action, namely the receive action in
process hn[i], is enabled for execution. Executing this action at state S.l
leads the network to state S.2 defined as follows.

S.2 : ch.sn.hn[i] = < > A

ch.hn[i].sn = <acpt(c, x, y, d)> A c = nc A d = MD(c; x; y; sc)

Note that in state S.2, the channel from process hn[i] to process sn has
only one message: acpt(c, x, y, d), where the following two conditions hold.
First, the value of field c in the message equals the value of variable nc in sn.
Second, the value of field d in the message equals the message digest of the
concatenation of the values of fields c, x, y, and the value of constant sc in
hn[i].

40 Chapter 5

At state S.2, exactly one legitimate action, namely the receive action in
process sn, is enabled for execution. Executing this action at S.2 leads the
network back to S.0 defined above.

States S.0, S.l and S.2 are called good states because the transitions
between these states only involve the legitimate actions of processes sn and
hn[i]. The sequence of the transitions from state S.0 to state S.1, from state
S.l to state S.2, and from state S.2 to state S.0, constitutes the good cycle in
which the network performs progress. If only legitimate actions of processes
sn and hn[i] are executed, the network will stay in this good cycle
indefinitely. Next, we discuss the bad effects caused by the actions of an
adversary, and how the network can recover from bad states to good states.

First, the adversary can execute a message loss action at state S.l or S.2.
If the adversary executes a message loss action at S.l, the only message in
the channel from process sn to process hn[i] is removed. If the adversary
executes a message loss action at S.2, the only message in the channel from
hn[i] to sn is removed. In either case, the network returns to state S.0 where
both channels are empty.

Second, the adversary can execute a message modification action at state
S.l or S.2. If the adversary executes a message modification action at S.l,
the network moves to state M where the ith element of array e in message
invt(c, e) is not equal to the message digest of the concatenation of c and
scr[i]. This message invt(c, e) will be received and discarded by hn[i]
because it cannot pass the integrity check in the receive action of hn[i]. If the
adversary executes a message modification action at S.2, the network moves
to state M' where the value of field d in message acpt(c, x, y, d) is not equal
to the message digest of the concatenation of the values of fields c, x, y in
the message and constant sc in hn[i]. This message acpt(c, x, y, d) will be
received and discarded by sn because it cannot pass the integrity check in the
receive action of sn. In either case, the network returns to state S.O.

Third, the adversary can execute a message replay action at state S.1 or
S.2. If the adversary executes a message replay action at S. 1, the network
moves to state P where the value of field c in message invt(c,e) is not equal
to the value of variable nc in sn, the ith element of array e in the message is
not equal to the ith element of array md in sn, but the ith element of array e is
equal to the message digest of the concatenation of the values of field c in
the message and the ith element of constant array scr in sn. This message
invt(c, e) will be received by hn[i] and it will pass the integrity check in the
receive action of hn[i]. Then, hn[i] sends a message acpt(c, x, y, d) to sn, and
the network enters state P' where the value of field c in message acpt(c, x, y,
d) is not equal to the value of variable nc in sn. This message acpt(c, x, y, d)
will be received and discarded by sn because it cannot pass the integrity
check in the receive action of sn, and the network returns to state S.0 where

Secure Address Resolution Protocol 4 1

both channels are empty. If the adversary executes a message replay action
at S.2, the network moves to state P' as described above. Then, the message
acpt(c, x, y, d) will be received and discarded by sn, and the network returns
to S.O.

From the state transition diagram, it is clear that each imposed
illegitimate action by the adversary will eventually lead the network back to
S.0, which is a good state. Once the network enters a good state, the network
can make progress in the good cycle. Hence the following two theorems
about the invite-accept protocol are proved.

Theorem 5.1 In the absence of an adversary, a network that executes the
invite-accept protocol will follow the good cycle, consisting of the
transitions @om state S. 0 to state S. 1, @om state S. I to state S.2, andfi.om
state S.2 to state S. 0, and will stay in this good cycle indefinitely.

Theorem 5.2 In the presence of an adversary, a network that executes the
invite-accept protocol will converge to the good cycle in a finite number of
steps after the adversary finishes executing the message loss, message
modiJication, and message replay actions.

THE REQUEST-REPLY PROTOCOL

Next, we outline the operation of the request-reply protocol as follows.
When a computer h[i] wants to send a message m to any other computer hlj]
on the same Ethernet and thus needs to resolve the IP address of hlj] into its
corresponding hardware address, h[i] can use the request-reply protocol to
send a request message to server s. Then server s replies by sending a reply
message to h[i]. If validu] in s is positive, which indicates hlj] has been up
shortly before s receives the request message, s sends h[i] a reply message
that contains the hardware address of hu]. Otherwise, s sends h[i] a reply
message with no hardware address in it. Therefore, h[i] does not send a
message to hlj] over the Ethernet unless hu] has been up shortly before the
message is sent. Similarly, with the secure address resolution protocol suite
installed in the subnetwork, router p does not send any message to router q
over the Ethernet connecting p and q unless router q has been up shortly
before the message is sent. Consequently, the Detection of Next-Hop Failure
condition is attained.

The request-reply protocol consists of process sr in server s and every
process hr[i] in computer h[i]. Process sr in server s shares the same unique
secret with process hr[i] in computer h[i] as shared between processes sn and
hn[i] in the invite-accept protocol.

42 Chapter 5

There are two types of messages in the request-reply protocol: request
and reply messages. The request messages are sent from process hr[i] to
process sr, whereas the reply messages are sent from process sr to process
hr[i]. When process hr[i] needs to resolve an IP address into its
corresponding hardware address, and hr[i] is not waiting for a reply message
for a previous request message, hr[i] sends a request message to process sr.
Then sr replies by sending a reply message to process hr[i].

Each request message is of the form rqst(nc, dst, d), where nc is the
unique nonce of the message, dst is the IP address of the destination
computer process hr[i] needs to resolve, and d is a message digest computed
by hr[i]. Before sending a rqst(nc, dst, d) msg, process hr[i] computes a
unique value for nc, and computes d as follows:

nc := NONCE;
d := MD(nc; dst; sc)

When process sr receives a rqst(nc, dst, d) message, it computes the value
MD(nc; dst; scr[i]) and compares the computed value with the received
value d in the message. If they are equal, then sr concludes correctly that this
message was indeed sent by hr[i], searches its database for the corresponding
hardware address of dst, and sends a reply message to hr[i]. Otherwise, sr
discards the received request message.

Each reply message, sent by process sr, is of the form rply(c, x, y, d),
where c is the message nonce that sr found in the last received request
message, x is the IP address of the destination computer requested by hr[i], y
is the corresponding hardware address of x, and d is the message digest
computed by sr as follows:

where scr[i] is the secret that server s shares with computer h[i].
When process hr[i] receives a rply(c, x, y, d) message from process sr, it

checks that c equals the nonce nc in the last request message sent by hr[i],
that x equals dst in the last request message sent by hr[i], and that d is a
correct digest for the reply message. If so, hr[i] concludes correctly that the
reply message was indeed sent by sr and takes y as the hardware address of
the destination computer. Otherwise, hr[i] discards the reply message.
Process hr[i] can be defined as follows.

process hr[i : 0 .. n-1]
const sc : integer {sc in hr[i] = scr[i] in sr}

t : integer
var nc, c, d : integer

dst, x, y : integer

Secure Address Resolution Protocol

wait : boolean
begin

- wait -+
wait := true;
nc := NONCE;
dst := any;
d := MD(nc; dst; sc);
send rqst(nc, dst, d) to sr

[I rcv rply(c, x, y, d) from sr -+
i f n c = c A d s t = x A d=MD(c;x;y;sc)+

{y is requested information about x)
wait := false

[I nc # c v dst # x v d z MD(c; x; y; sc) -+
{discard message)
skip

fi

[I timeout wait A (t seconds passed since first action executed last) +
d := MD(nc; dst; sc);
send rqst(nc, dst, d) to sr

end

Process hr[i] has three actions. In the first action, process hr[i] sends a
request message to process sr while not waiting. In the second action, hr[i]
receives a reply message from sr, and derives the hardware address of the
destination computer. In the third action, hr[i] times out after waiting for t
seconds, and resends the same request message to sr.

Note that in the second action, process hr[i] checks both field c and field
x in message rply(c, x, y, d) to see if they are equal to the values of nc and
dst respectively. The purpose of this double-checking is to make sure that
the reply message corresponds to the request message for which hr[i] is
waiting for a reply, and that the hardware address contained in the reply
message corresponds to the IP address hr[i] needs to resolve, and also to
make it harder for the adversary to modify the message.

Process sr can read (but not write) the three arrays ipa[O .. n-11, hda[O ..
n-11, and valid[O .. n-1] that are updated regularly by process sn of the
invite-accept protocol. Process sr can be defined as follows.

process sr
const scr : array [O .. n-1] of integer

ipa : array [O .. n-1] of integer

Chapter 5

hda : array [O .. n-I] of integer
valid : array [0 .. n-1] of integer

var c, d : integer
x : integer
j : O..n

par i : O..n-l
begin

rcv rqst(c, x, d) from hr[i] +
if d = MD(c; x; scr[i]) +

j := 0;
do ipalj] # x A j < n +

j : = j + l
od;
if j < n A validlj] > 0 +

d := MD(c; x; hdalj]; scr[i]);
send rply(c, x, hdalj], d) to hr[i]

[I j = n v validti] = 0 +
d := MD(c; x; 0; scr[i]);
send rply(c, x, 0, d) to hr[i]

fi
[I d # MD(c; x; scr[i]) -+

{discard message)
skip

fi
end

Process sr has only one action, in which sr receives a request message
from a process hr[i] and sends a reply message to hr[i].

Note that when process sr receives a request message from process hr[i],
it first checks the integrity of the message. Then, sr searches array ipa for the
IP address that hr[i] requests to resolve. If the requested IP address exists in
array ipa and the validity count for it is larger than 0, then sr sends a reply
message, containing the corresponding hardware address, to hr[i]. If the
requested IP address does not exist in array ipa or the validity count is equal
to 0, then sr sends a reply message, containing an empty hardware address,
to hr[i].

To verify the correctness of the request-reply protocol, we can use the
state transition diagram as shown in Figure 5.3. This diagram has eight states
that represent all possible reachable states of the protocol. The predicates for
each state in the diagram are shown in Figure 5.4.

Secure Address Resolution Protocol

Figure 5-3. State transition diagram of the request-reply protocol.

M

Initially, the network starts at a state S.0 where the value of variable wait
in process hr[i] is false and the two channels between processes hr[i] and sr
are empty. At S.0, exactly one action, namely the first action in hr[i], is
enabled for execution. Executing this action at S.0 leads the network to state
S. 1, where the channel from hr[i] to sr has only one message rqst(c, x, d). In
this message, the value of field c equals the value of variable nc in hr[i], the
value of field x equals the value of variable dst in hr[i], and the value of field
d equals the message digest of the concatenation of the values of fields c, x,
and the value of constant sc in hr[i].

At state S.l, exactly one legitimate action, namely the receive action in
process sr, is enabled for execution. Executing this action at S.l leads the
network to state S.2, where the channel from sr to hr[i] has only one message
rply(c, x, y, d). In this message, the value of field c equals the value of
variable nc in hr[i], the value of field x equals the value of variable dst in
hr[i], and the value of field d equals the message digest of the concatenation
of the values of fields c, x, y, and the ith element of constant array scr in sr.

At state S.2, exactly one legitimate action, namely the receive action in
hr[i], is enabled for execution. Executing this action at S.2 leads the network
back to S.O.

States S.0, S.l and S.2 are the good states of the request-reply protocol,
and the sequence of the transitions from S.0 to S.l, from S.l to S.2, and from
S.2 to S.0, constitutes the good cycle in which the network performs
progress. Next, we discuss the bad effects caused by the actions of the
adversary, and how the network can recover from bad states to good states.

-
M:rqst M:rply - S.1 S.2 b M'

A
timeout

D:rqst D:rply

I
7 7 7

46 Chapter 5

wait A

ch.hr[i].sr = <rqst(c, x, d)> A c = nc A x = dst A d = MD(c; x; sc) A

ch.sr.hr[i] = < >

wait A

ch.hr[i].sr = < > A

ch.sr.hr[i] = <rply(c, x, y, d)> A c = nc A x = dst A d = MD(c; x; y; scr[i])

wait A

ch.hr[i].sr = <rqst(c, x, d)> A d # MD(c; x; sc) A

ch.sr.hr[i] = < >

wait A

ch.hr[i].sr = < > A

ch.sr.hr[i] = <rply(c, x, y, d)> A d # MD(c; x; y; scr[i])

wait A

ch.hr[i].sr = <rqst(c, x, d)> A c # nc A d = MD(c; x; sc) A

ch.sr.hr[i] = < >

wait A

ch.hr[i].sr = < > A

ch.sr.hr[i] = <rply(c, x, y, d)> A c # nc A d = MD(c; x; y; scr[i])

wait A ch.hr[i].sr = < > A ch.sr.hr[i] = i >

Figure 5-4. Predicates for the states in the state transition diagram of the request-reply
protocol.

First, the adversary can execute a message loss action at state S.l or S.2.
If the adversary executes a message loss action at S.l or S.2, the network
moves to state L where the value of variable wait in hr[i] is true and the two
channels between hr[i] and sr are empty. After the timeout action, the
network returns to S. 1.

Second, the adversary can execute a message modification action at state
S.l or S.2. If the adversary executes a message modification action at S.1,
the network moves to state M where the value of field d in message rqst(c, x,
d) is not equal to the message digest of the concatenation of the values of
fields c, x in the message and constant sc in hr[i]. This message rqst(c, x, d)
will be received and discarded by sr because it cannot pass the integrity
check. If the adversary executes a message modification action at S.2, the

Secure Address Resolution Protocol 47

network moves to state M' where the value of field d in message rply(c, x, y,
d) is not equal to the message digest of the concatenation of the values of
fields c, x, y in the message and the ith element of constant array scr in sr.
This message rply(c, x, y, d) will be received and discarded by hr[i] because
it cannot pass the integrity check. In either case, the network moves to state
L next and eventually returns to S. 1.

Third, the adversary can execute a message replay action at state S.1 or
S.2. If the adversary executes a message replay action at S. 1, the network
moves to state P where the value of field c in message rqst(c, x, d) is not
equal to the value of variable nc in hr[i], and the value of field d equals the
message digest of the concatenation of the values of fields c and x in the
message and constant sc in hr[i]. This message rqst(c, x, d) will be received
and accepted by sr because it can pass the integrity check. Thus sr sends to
hr[i] a message rply(c, x, y, d), and the network moves to state P' where the
value of field c in message rply(c, x, y, d) is not equal to the value of
variable nc in hr[i], and the value of field d equals the message digest of the
concatenation of the values of fields c, x, y, and the ith element of constant
array scr in sr. If the adversary executes a message replay action at S.2, the
network moves to state P' as well. From state P', message rply(c, x, y, d) will
be received and discarded by hr[i] because it cannot pass the integrity check,
and the network moves to state L. Eventually, the network returns to S. 1.

From the state transition diagram, it is clear that each imposed
illegitimate action by the adversary will eventually lead the network back to
S. 1, which is a good state. Once the network enters a good state, the network
can make progress in the good cycle. Hence the following two theorems
about the request-reply protocol are proved.

Theorem 5.3 In the absence of an adversary, a network that executes the
request-reply protocol will follow the good cycle, consisting of the
transitions @om state S. 0 to state S. I , @om state S. I to state S.2, and @om
state S.2 to state S.0, and will stay in this good cycle indefinitely.

Theorem 5.4 In the presence of an adversary, a network that executes the
request-reply protocol will converge to the good cycle in afinite number of
steps ajler the adversary finishes executing the message loss, message
modzjication, and message replay actions.

EXTENSIONS

In this section, we outline four extensions of the secure address
resolution protocol. First, we extend the protocol to support insecure address

4 8 Chapter 5

resolution for mobile computers that may visit an Ethernet but share no
secrets with the secure server in that Ethernet. Second, we make the protocol
more reliable by adding a backup server to its architecture. Third, we make
the protocol perform some system diagnosis tasks. Fourth, we make the
secure server act as a server for several Ethernets to which the server is
attached.

4.1 Insecure Address Resolution

Consider an Ethernet that has several computers h[O .. n-I] and a secure
server s. Assume that these computers and server use the secure address
resolution protocol (discussed above) to resolve IP addresses to hardware
addresses. Assume also that mobile computers h[n .. r-1] visit this Ethernet
but do not share any secret with the secure servers. In order that computers
h[n .. r-I] can exchange messages with the other computers on this Ethernet,
h[n .. r-1] need to use an "insecure" version of the address resolution
protocol. Thus, server s needs to support two versions of the address
resolution protocol: secure and insecure. If a message is due to insecure
version of the address resolution protocol, then the information in the
message is insecure. In particular, if a message comes from or will be sent to
one of computers h[n .. r-11, or contains resolved address of one of
computers h[n .. r-I], then the information in the message is insecure.
Otherwise, if the message is due to secure version of the protocol, then the
information in the message is secure.

The insecure version of the invite-accept protocol proceeds as follows.
Whenever server s sends a invt(nc, md) to every computer in the Ethernet,
computer h[i], where n I i < r, replies by sending back acpt(nc, x, y, d)
message, where d has an arbitrary value, to server s. When server s receives
a acpt(nc, x, y, d) message from computer h[i] and notices that h[i] is one of
the mobile computers h[n .. r-11, it concludes that the message is insecure
and so it does not attempt to check the correctness of the message digest d.
Nevertheless, s stores in its database the IP address x and the hardware
address y of computer h[i] along with an indication that this information is
unreliable.

Process sn, process hn[O .. n-11, and process hn[n .. r-1] in the invite-
accept protocol with extension for insecure address resolution can be
specified as follows.

process sn
const scr : array [0 .. n-1] of integer {shared secrets)

T : integer {T 2 round trip delay between)
{sn and each hn[i])

Secure Address Resolution Protocol

vmax : integer
var ipa : array [0 .. r-I] of integer {r > n)

hda : array [O .. r-1] of integer
valid : array [O .. n-1] of 0 .. vmax
md : array [O .. n-1] of integer
nc, c, d : integer
X, Y : integer
j : O..n

par i : 0 .. r-1
begin

timeout (T seconds passed since this action executed last) +
nc := NONCE;
j := 0;
d o j < n +

mdu] := MD(nc; scrlj]);
validb] := max(0, validlj] - 1);
j : = j + l

od;
send invt(nc, md) to hn

[I rcv acpt(c, x, y, d) from hn[i] -+
i f i < n +

if c = nc A d = MD(c; x; y; scr[i]) -+
ipa[i] := x;
hda[i] := y;
valid[i] := vmax

[I c # nc v d # MD(c; x; y; scr[i]) +
{discard message)
skip

fi
[] n I i < r +

if c = nc +
ipa[i] := x;
hda[i] := y;

[I c # nc -+
{discard message)
skip

fi
fi

end

process hn[i : 0 .. n-1]

5 0 Chapter 5

const sc : integer {sc in hn[i] = scr[i] in sn)
ip, hd : integer

var e : array [O .. n-I] of integer
c, d : integer

begin
rcv invt(c, e) from sn -+

d := MD(c; sc);
if d = e[i] -+

d := MD(c; ip; hd; sc);
send acpt(c, ip, hd, d) to sn

[I d # e[i] -+
{discard message}
skip

ti
end

process hn[i : n .. r-I]
const ip, hd : integer
var e : array [O .. n-1] of integer

c : integer
begin

rcv invt(c, e) from sn -+
send acpt(c, ip, hd, 0) to sn

end

Note that the proof of correctness of secure version of the invite-accept
protocol (between process sn and processes hn[O .. 11-11) remains the same as
we have shown in Figure 5.2. No proof can be derived for the insecure
version (between process sn and processes hn[n .. r-1]), however, because
nothing can be guaranteed for the messages exchanged between sn and hn[n
.. r-11.

The insecure version of the request-reply protocol proceeds as follows.
There are two cases to consider. First, server s may receive a rqst(nc, x, d)
message from a computer h[i], where x is the IP address of computer hu],
and 0 I i < n. In this case, s replies by sending a rply(nc, x, y, d) message to
computer h[i], where y is the hardware address of computer hu], and d is
computed as follows: if 0 I j < n, then d = MD(nc; x; y; scr[i]; 1) (the last bit
"1" is used to indicate that y is secure information); if n 5 j < r, then d =

MD(nc; x; y; scr[i]; 0) (the last bit "0" is used to indicate that y is insecure
information). Second, server s may also receive a rqst(nc, x, d) message
from a computer h[i], where x is the IP address of computer hu], and n I i <
r. In this case, s replies by sending a rply(nc, x, y, d) message to computer

Secure Address Resolution Protocol 5 1

h[i], where y is the hardware address of computer hfi], and d has an arbitrary
value.

Process hr[O .. n-11, process hr[n .. r-11, and process sr in the request-
reply protocol with extension for insecure address resolution can be
specified as follows.

process hr[i : 0 .. n-1]
const sc : integer {sc in hr[i] = scr[i] in sr)

t : integer
var nc, c, d : integer

dst, x, y : integer
wait : boolean

begin
- wait -+

wait := true;
nc := NONCE;
dst := any;
d := MD(nc; dst; sc);
send rqst(nc, dst, d) to sr

[I rcv rply(c, x, y, d) from sr +
if nc = c A dst = x A d = MD(c; x; y; sc; 1) +

{y is secure information about x)
wait := false

[I nc = c A dst = x A d = MD(c; x; y; sc; 0) +
{y is insecure information about x)
wait := false

[I nc # c v dst # x v
(d ;t MD(c; x; y; sc; 1) A d + MD(c; x; y; sc; 0)) +

{discard message)
skip

fi

[I timeout wait A (t seconds passed since first action executed last) +
d := MD(nc; dst; sc);
send rqst(nc, dst, d) to sr

end

process hr[i : n .. r-1]
const t : integer
var nc, c, d : integer

dst, x, y : integer

Chapter 5

wait : boolean
begin

- wait +
wait := true;
nc := NONCE;
dst := any;
send rqst(nc, dst, 0) to sr

[I rcv rply(c, x, y, d) from sr +
i f n c = c A d s t = x +

{y is requested information about x)
wait := false

[] n c # c v dst ; tx+
{discard message)
skip

ti

[I timeout wait A (t seconds passed since first action executed last) +
send rqst(nc, dst, 0) to sr

end

process sr
const scr : array [O .. n-1] of integer

ipa : array [O .. r-1] of integer
hda : array [O .. r- 1] of integer
valid : array [O .. n-1] of integer

var c, d : integer
x : integer
j : O..r

par i : O..r-1
begin

rcv rqst(c, x, d) from hr[i] +
i f i < n +

if d = MD(c; x; scr[i]) -+
j := 0;
doipalj]#x A j < r +

j : = j + l
od;
if j < n A validlj] > 0 -+

d := MD(c; x; hdalj]; scr[i]; 1);
send rply(c, x, hdalj], d) to hr[i]

[] n I j < r +

Secure Address Resolution Protocol

d := MD(c; x; hdau]; scr[i]; 0);
send rply(c, x, hdab], d) to hr[i]

[I j = r v validb] = 0 +
d := MD(c; x; 0; scr[i]; 1);
send rply(c, x, 0, d) to hr[i]

fi
[I d # MD(c; x; scr[i]) +

{discard message)
skip

fi
[] n < i < r +

j := 0;
doipal j]#x A j < r +

j : = j + 1
od;
if (j < n A validu] > 0) v n 5 j < r -+

send rply(c, x, hdau], 0) to hr[i]
[] n l j < r +

send rply(c, x, hdau], 0) to hr[i]
[I j = r v validu] = 0 +

send rply(c, x, 0, 0) to hr[i]
fi

fi
end

Note that the proof of correctness of secure version of the request-reply
protocol (between process sr and processes hr[O .. n-11) remains the same as
we have shown in Figure 5.3, except that each appearance of conjunct "d =

MD(c; x; y; scr[i])" in the predicates of S.2 and P' needs to be replaced by "d
= MD(c; x; y; scr[i]; 1) v d = MD(c; x; y; scr[i]; O)", and conjunct "d #

MD(c; x; y; scr[i])" in the predicate of M' needs to be replaced by "d #

MD(c; x; y; scr[i]; 1) A d # MD(c; x; y; scr[i]; 0)". No proof can be derived
for the insecure version (between process sr and processes hr[n .. r-l]),
however, because nothing can be guaranteed for the messages exchanged
between sr and hr[n .. r-11.

4.2 A Backup Server

The main problem of the secure address resolution protocol discussed
above is that its secure server s represents a single point of failure. This
problem can be resolved somewhat by adding a backup server bs to the
Ethernet. Initially server bs is configured in a promiscuous mode so that it

5 4 Chapter 5

receives a copy of every message sent over the Ethernet. Because server bs
receives copies of all accept messages sent over the Ethernet, bs keeps its
database up-to-date in the same way server s keeps its database up-to-date.
(This necessitates that server bs is provided with all the secrets that server s
shares with the computers on the Ethernet.)

Server bs sends no message as long as server s continues to send invite
messages every T seconds over the Ethernet. If server bs observes that server
s has not sent an invite message for vmax * T seconds, it concludes that
server s has failed. In this case, bs reports the failure, and assumes the duties
of s: it starts to send invite messages every T seconds and to send a reply
message for every received request message.

4.3 System Diagnosis

In the secure address resolution protocol, the secure server s may
conclude that some computer h[i] on the Ethernet has failed. This happens
when s sends vmax consecutive invite messages and does not receive an
accept message for any of them from computer h[i]. Thus, server s can be
designed to report computer failures to the system administrator, whenever s
detects such failures. In this case, system diagnosis becomes a side task of
the secure address resolution protocol.

4.4 Serving Multiple Ethernets

The architecture of the secure address resolution protocol can be
extended to allow s to act as a secure server for several Ethernets (rather than
a single Ethernet) to which s is attached [S]. With this extension, the
computers h[O .. n-1] can be distributed over several Ethernets and n can
become large. In the extended architecture, server s sends invite messages
over the different Ethernets at the same time, then waits to receive accept
messages over the different Ethernets. Also, each computer on an Ethernet
can request (from server s) the hardware address of any other computer on
the same Ethernet or on a different Ethernet.

Chapter 6

WEAK HOP INTEGRITY PROTOCOL

In this and the next two chapters, we present the hop integrity protocols.
The hop integrity protocols belong to two thin layers, namely the secret
exchange layer and the integrity check layer, that need to be added to the
network layer of the protocol stack of each router in a network. The function
of the secret exchange layer is to allow adjacent routers to periodically
generate and exchange (and so share) new secrets. The exchanged secrets are
made available to the integrity check layer, which uses them to compute and
verify the integrity check for every data message transmitted between the
adjacent routers.

Figure 6.1 shows the protocol stacks in two adjacent routers p and q. The
secret exchange layer has one protocol: the secret exchange protocol. This
protocol consists of the two processes pe and qe in routers p and q,
respectively. The integrity check layer has two protocols: the weak integrity
check protocol and the strong integrity check protocol. The weak version
consists of the two processes pw and qw in routers p and q, respectively.
This version can detect message modification, but not message replay. The
strong version of the integrity check layer consists of the two processes ps
and qs in routers p and q, respectively. This version can detect both message
modification and message replay.

In this chapter, we present the weak hop integrity protocol, which is the
combination of the secret exchange protocol and the weak integrity check
protocol. In the next chapter, we present the strong hop integrity protocol,
which is the combination of the secret exchange protocol and the strong
integrity check protocol.

router D router a

Chapter 6

I avvlications

key
exchange--
layer

transvort +
network

check
layer

1 subnetwork

transvort

subnetwork

A

Figure 6-1. Protocol stack for hop integrity protocols.

- - - - -.

This chapter is organized as follows. First, we present the secret
exchange protocol, and verify its correctness. Then, we present the weak
integrity check protocol, and verify its correctness.

- - - - -

1. SECRET EXCHANGE PROTOCOL

In the secret exchange protocol, the two processes pe and qe maintain
two shared secrets sp and sq. Secret sp is used by router p to compute the
integrity check for each data message sent by p to router q, and it is also
used by router q to verify the integrity check for each data message received
by q from router p. Similarly, secret sq is used by q to compute the integrity
checks for data messages sent to p, and it is used by p to verify the integrity
checks for data messages received from q.

As part of maintaining the two secrets sp and sq, processes pe and qe
need to change these secrets periodically, say every te hours, for some
chosen value te. Process pe is to initiate the change of secret sq, and process
qe is to initiate the change of secret sp. Processes pe and qe each has a public
key and a private key that they use to encrypt and decrypt the messages that

v *
network I ke)

t w
I

Weak Hop Integrity Protocol 5 7

carry the new secrets between pe and qe. A public key is known to all
processes (in the same layer), whereas a private key is known only to its
owner process. The public and private keys of process pe are named B, and
R, respectively; similarly, the public and private keys of process qe are
named B, and % respectively.

For process pe to change secret sq, the following four steps need to be
performed. First, pe generates a new sq, and encrypts the concatenation of
the old sq and the new sq using qe's public key B,, and sends the result in a
rqst message to qe. Second, when qe receives the rqst message, it decrypts
the message contents using its private key R, and obtains the old sq and the
new sq. Then, qe checks that its current sq equals the old sq from the rqst
message, and installs the new sq as its current sq, and sends a rply message
containing the encryption of the new sq using pe's public key B,. Third, pe
waits until it receives a rply message from qe containing the new sq
encrypted using B,. Receiving this rply message indicates that qe has
received the rqst message and has accepted the new sq. Fourth, if pe sends
the rqst message to qe but does not receive the rply message from qe for
some tr seconds, indicating that either the rqst message or the rply message
was lost before it was received, then pe resends the rqst message to qe. Thus
tr is an upper bound on the round trip time between pe and qe.

Note that the old secret (along with the new secret) is included in each
rqst message and the new secret is included in each rply message to ensure
that if an adversary modifies or replays rqst or rply messages, then each of
these messages is detected and discarded by its receiving process (whether
pe or qe).

Process pe has two variables sp and sq declared as follows.

var sp : integer
sq : array [O .. 11 of integer

Similarly, process qe has an integer variable sq and an array variable sp.
In process pe, variable sp is used for storing the secret spy variable sq[O]

is used for storing the old sq, and variable sq[l] is used for storing the new
sq. The assertion sq[O] # sq[l] indicates that process pe has generated and
sent the new secret sq, and that qe may not have received it yet. The
assertion sq[O] = sq[l] indicates that qe has already received and accepted
the new secret sq. Initially,

sq[0] in pe = sq[l] in pe = sq in qe, and
sp[O] in qe = sp[l] in qe = sp in pe.

Process pe can be defined as follows. (Process qe can be defined in the
same way except that each occurrence of Rp in pe is replaced by an

5 8 Chapter 6

occurrence of R, in qe, each occurrence of B, in pe is replaced by an
occurrence of Bp in qe, each occurrence of sp in pe is replaced by an
occurrence of sq in qe, and each occurrence of sq[O] or sq[l] in pe is
replaced by an occurrence of sp[O] or sp[l], respectively, in qe.)

process pe
const Rp : integer {private key of pe)

B, : integer {public key of qe)
te : integer {time between secret exchanges)
tr : integer {upper bound on round trip time)

var sp : integer
sq : array [0 .. 11 of integer{initially sq[O] = sq[l] = sq in

qe)
d, e : integer

begin
timeout (sq[O] = sq[l] A

(te hours passed since rqst message sent last)) +
sq[l] := NEWSCR;
e := NCNB,, (sq[Ol; sq[ll));
send rqst(e) to qe

[I rcv rqst(e) from qe +
(d, e) := DCR(Rp, e);
i f s p = d v s p = e +

sp := e;
e := NCR(B,, sp);
send rply(e) to qe

[] s p # d A s p # e +
{detect adversary)
skip

fi

[I rcv rply(e) from qe +
d := DCR(R,, e);
if sq[l] = d +

sq[O] := sq[l]
[I N l I # d +

{detect adversary)
skip

fi

[I timeout (sq[O] # sq[l] A

Weak Hop Integrity Protocol 59

(tr seconds passed since rqst message sent last)) +
e := NCR(Bq, (sq[Ol; sq[ll));
send rqst(e) to qe

end

The four actions of process pe use three functions NEWSCR, NCR, and
DCR defined as follows. Function NEWSCR takes no arguments, and when
invoked, it returns a fresh secret that is different from any secret that was
returned in the past. Function NCR is an encryption function that takes two
arguments, a key and a data item, and returns the encryption of the data item
using the key. For example, execution of the statement

causes the concatenation of sq[O] and sq[l] to be encrypted using the public
key Bq, and the result to be stored in variable e. Function DCR is a
decryption function that takes two arguments, a key and an encrypted data
item, and returns the decryption of the data item using the key. For example,
execution of the statement

causes the (encrypted) data item e to be decrypted using the private key Rp,
and the result to be stored in variable d. As another example, consider the
statement

(d, e) := DCR(Rp, e)

This statement indicates that the value of e is the encryption of the
concatenation of two values (vo; vl) using key R,. Thus, executing this
statement causes e to be decrypted using key Rp, and the resulting first value
vo to be stored in variable d, and the resulting second value vl to be stored in
variable e.

To verify the correctness of the secret exchange protocol, we can use the
state transition diagram of this protocol in Figure 6.2. This diagram has six
nodes that represent all possible reachable states of the protocol. Every
transition in the diagram stands for either a legitimate action (of process pe
or process qe), or an illegitimate action of the adversary.

Chapter 6

timeout & S:rqst R:rply

R:rqst & S:rp!y - S.l S.2 -

R:rqst R:rp!y * M.1 L.0 4 M.2

ch.pe.qe = < > A ch.qe.pe = < > A sq[O] in pe = sq[l] in pe = sq in qe

ch.pe.qe = <rqst(e)> A ch.qe.pe = < > A e = NCR(Bq, (sq[O]; sq[l])) A

sq[O] in pe + sq[l] in pe A sq[O] in pe = sq in qe

ch.pe.qe = < > A ch.qe.pe = <rply(e)> A e = NCR(B,, sq) A

sq[O] in pe # sq[l] in pe A sq[l] in pe = sq in qe

ch.pe.qe = <rqst(e)> A ch.qe.pe = < > A e # NCR(Bq, (sq[O]; sq[l])) A

sq[O] in pe # sq[l] in pe A (sq[O] in pe = sq in qe v sq[l] in pe = sq in qe)

ch.pe.qe = < > A ch.qe.pe = <rply(e)> A e # NCR(B,, sq) A

sq[O] in pe + sq[l] in pe A (sq[O] in pe = sq in qe v sq[l] in pe = sq in qe)

ch.pe.qe = < > A ch.qe.pe = < > A

sq[O] in pe + sq[l] in pe A (sq[O] in pe = sq in qe v sq[l] in pe = sq in qe)

Figure 6-2. State transition diagram of the secret exchange protocol.

Initially, the protocol starts at a state S.0, where the two channels
between processes pe and qe are empty and the values of variables sq[O],
sq[l] in pe and variable sq in qe are the same. This state can be defined by
the following predicate

Weak Hop Integrity Protocol 6 1

At state S.0, exactly one action, namely the first timeout action in process
pe, is enabled for execution. Executing this action at state S.0 leads the
protocol to state S. 1 defined as follows.

At state S. 1, exactly one legitimate action, namely the receive action (that
receives a rqst message) in process qe, is enabled for execution. Executing
this action at state S. 1 leads the protocol to state S.2 defined as follows.

S.2 : ch.pe.qe = < > A ch.qe.pe = <rply(e)> A

e = NCR(B,, sq) A

sq[O] in pe ;t sq[l] in pe A sq[l] in pe = sq in qe

At state S.2, exactly one legitimate action, namely the receive action (that
receives a rply message) in process pe, is enabled for execution. Executing
this action at state S.2 leads the protocol back to state S.0 defined above.

States S.0, S.l and S.2 are called good states because the transitions
between these states consist of executing the legitimate actions of the two
processes. The sequence of transitions from state S.0 to state S.l, to state
S.2, and back to state S.0 constitutes the good cycle of the protocol. If only
legitimate actions of processes pe and qe are executed, the protocol will stay
in this good cycle indefinitely. Next, we discuss the bad effects caused by
the actions of an adversary, and how the protocol can recover from these
effects.

First, the adversary can execute a message loss action at state S. 1 or S.2.
If the adversary executes a message loss action at state S.l or S.2, the
network moves to a state L.0 defined as follows.

L.0 :ch.pe.qe = < > A ch.qe.pe = < > A

sq[O] in pe # sq[l] in pe A

(sq[O] in pe = sq in qe v sq[l] in pe = sq in qe)

At state L.0, only the second timeout action in pe is enabled for
execution, and executing this action leads the network back to state S. 1.

Second, the adversary can execute a message modification action at state
S.l or S.2. If the adversary executes a message modification action at state
S. 1, the network moves to state M. 1 defined as follows.

(sq[O] in pe = sq in qe v sq[l] in pe = sq in qe)

Chapter 6

If the adversary executes a message modification action at state S.2, the
network moves to state M.2 defined as follows.

M.2 : ch.pe.qe = < > A ch.qe.pe = <rply(e)> A

e # NCR(B,, sq) A

sq[O] in pe ;t sq[l] in pe A

(sq[O] in pe = sq in qe v sq[l] in pe = sq in qe)

In either case, the protocol moves next to state L.0 and eventually returns
to state S. 1.

Third, the adversary can execute a message replay action at state S.l or
S.2. If the adversary executes a message replay action at state S.1, the
network moves to state M.1. If the adversary executes a message replay
action at state S.2, the network moves to state M.2. As shown above, the
protocol eventually returns to state S. 1.

From the state transition diagram in Figure 6.2, it is clear that each
illegitimate action by the adversary will eventually lead the network back to
state S.1, which is a good state. Once the network is in a good state, the
network can progress in the good cycle. Hence the following two theorems
about secret exchange protocol are proved.

Theorem 6.1 In the absence of an adversary, a network that executes the
secret exchange protocol will follow the good cycle, consisting of the
transitions fiom state S.0 to state S. I , @om state S. I to state S.2, and fiom
state S.2 to state S. 0, and will stay in this good cycle indefinitely.

Theorem 6.2 In the presence of an adversary, a network that executes the
secret exchange protocol will converge to the good cycle in a finite number
of steps after the adversary finishes executing the message loss, message
modiJication, and message replay actions.

2. WEAK INTEGRITY CHECK PROTOCOL

The main idea of the weak integrity check protocol is simple. Consider
the case where a data(t) message, with t being the message text, is generated
at a source src then transmitted through a sequence of adjacent routers r.1,
r.2, . . ., r.n to a destination dst. When data(t) reaches the first router r.1, r.1
computes a digest d for the message as follows:

d := MD(t; scr)

Weak Hop Integrity Protocol 63

where MD is the message digest function, (t; scr) is the concatenation of the
message text t and the shared secret scr between r.1 and r.2 (provided by the
secret exchange protocol in r.1). Then, r.1 adds d to the message before
transmitting the resulting data(t, d) message to router r.2.

When the second router r.2 receives the data(t, d) message, r.2 computes
the message digest using the secret shared between r.1 and r.2 (provided by
the secret exchange process in r.2), and checks whether the result equals d. If
they are unequal, then r.2 concludes that the received message has been
modified, discards it, and reports an adversary. If they are equal, then r.2
concludes that the received message has not been modified and proceeds to
prepare the message for transmission to the next router r.3. Preparing the
message for transmission to r.3 consists of computing d using the shared
secret between r.2 and r.3 and storing the result in field d of the data(t, d)
message.

When the last router r.n receives the data(t, d) message, it computes the
message digest using the shared secret between r.(n-I) and r.n and checks
whether the result equals d. If they are unequal, r.n discards the message and
reports an adversary. Otherwise, r.n sends the data(t) message to its
destination dst.

Note that this protocol detects and discards every modified message.
More importantly, it also determines the location where each message
modification has occurred.

Process pw in the weak integrity check protocol has two constants sp and
sq that pw reads but never updates. These two constants in process pw are
also variables in process pe, and pe updates them periodically, as discussed
in the previous section. Process pw can be defined as follows. (Process qw is
defined in the same way except that each occurrence of p, q, pw, qw, sp, and
sq is replaced by an occurrence of q, p, qw, pw, sq, and spy respectively.)

process pw
const sp : integer

sq : array [O .. 11 of integer
var t, d : integer
begin

rcv data(t, d) from qw +
if MD(t; sq[O]) = d v MD(t; sq[l]) = d +

{accept message}
RTMSG

[I MD(t; sq[O]) # d A MD(t; sq[l]) # d +
{report an adversary)
skip

fi

Chapter 6

[I true -+
{p receives data(t, d) from router other than q)
{and checks that its message digest is correct)
RTMSG

[I true +
{either p receives data(t) from an adjacent host or)
{p generates the text t for the next data message)
RTMSG

end

In the first action of process pw, if pw receives a data(t, d) message from
qw while sq[O] # sq[l], then pw cannot determine beforehand whether qw
computed d using sq[O] or using sq[l]. In this case, pw needs to compute
two message digests using both sq[O] and sq[l] respectively, and compare
the two digests with d. If either digest equals d, then pw accepts the
message. Otherwise, pw discards the message and reports the detection of an
adversary.

The three actions of process pw use two functions named MD and NXT,
and one statement named RTMSG. Function MD takes one argument,
namely the concatenation of the text of a message and the appropriate secret,
and computes a digest for that argument. Function NXT takes one argument,
namely the text of a message (which we assume includes the message
header), and computes the next router to which the message should be
forwarded. Statement RTMSG is defined as follows.

if NXT(t) = p +
{accept message)
skip

[I NXT(t) = q +
d := MD(t; sp);
send data(t, d) to qw

[I NXT(t) # p A NXT(t) # q +
{compute d as the message digest of)
{the concatenation o f t and the secret)
{for sending data to NXT(t); forward)
{data(t, d) to router NXT(t))
skip

fi

Weak Hop Integrity Protocol 6 5

To verify the correctness of the weak integrity protocol, we can use the
state transition diagram of this protocol in Figure 6.3, which considers the
channel from process qw to process pw. (The channel from pw to qw, and
the channels from pw to any other weak integrity process in an adjacent
router of p, can be verified in the same way.) This diagram has two nodes
that represent all possible reachable states of the protocol. Every transition in
the diagram stands for either a legitimate action (of process pw or process
qw), or an illegitimate action of the adversary.

%data R:data & Accept

- -

T.0 = I A ('ddata(t, d) message in ch.qw.pw, d = MD(t; sq))

T.0 L:data

M.0 = I A ('ddata(t, d) message in ch.qw.pw,
(7Head(data(t, d)) d = MD(t; sq)) A

(Head(data(t, d)) 3 d # MD(t; sq)))
where
I = sq in qw = sq[O] in pw v sq in qw = sq[l] in pw

M:data

Figure 6-3. State transition diagram of the weak integrity check protocol.

A
R:data &
Discard

Note that because the weak integrity check protocol operates below the

7
1

secret exchange protocol in the protocol stack, we can assert that (sq in qw =

sq[O] in pw v sq in qw = sq[l] in pw) is an invariant in every state of the
weak integrity protocol. We denote this invariant as I in the specification in
Figure 6.3. Also note that the notation Head(data(t, d)) in the specification in

66 Chapter 6

Figure 6.3 is a predicate whose value is true iff data(t, d) is the head message
of the specified channel.

Initially, the protocol starts at state T.O. At state T.0, two legitimate
actions, namely the send action in qw that sends a data message, and the
receive action in pw that receives a data message, can be executed.
Executing either one of the two actions at state T.0 keeps the protocol in
state T.O.

States T.0 is the only good state in the weak integrity protocol. The
sequence of the transitions from state T.0 to state T.0 constitutes the good
cycle of the protocol. If only legitimate actions of processes pw and qw are
executed, the protocol will stay in this good cycle indefinitely. Next, we
discuss the bad effects caused by the actions of an adversary, and how the
protocol can recover from these effects.

First, the adversary can execute a message loss action at state T.O. If the
adversary executes a message loss action at state T.0, the predicate that for
every data message data(t, d) in the channel from qw to pw, d = MD(t; sq),
still holds. Therefore, the protocol stays at state T.O.

Second, the adversary can execute a message modification action at state
T.O. If the adversary executes a message modification at state T.0, the
protocol moves to state M.O. The receive and discard action executed by pw
at state M.0 leads the protocol back to state T.O.

From the state transition diagram, it is clear that each illegitimate action
by the adversary will eventually lead the protocol back to T.0, which is a
good state. Once the protocol is in a good state, the protocol can progress in
the good cycle. Hence the following two theorems about the weak integrity
check protocol are proved.

Theorem 6.3 In the absence of an adversary, a network that executes the
weak integrity check protocol follows the good cycle, consisting of the single
transition from state T.0 to state TO, and will stay in this good cycle
indefinitely.

Theorem 6.4 In the presence of an adversary, a network that executes the
weak integrity check protocol will converge to the good cycle in a finite
number of steps after the adversary finishes executing the message loss and
message modification actions.

However, the weak integrity check protocol, while being able to detect
and discard all modified messages, cannot detect some replayed messages.
In the next chapter, we introduce the strong integrity protocol that is capable
of detecting and discarding all modified and replayed messages.

Chapter 7

STRONG HOP INTEGRITY USING SOFT
SEQUENCE NUMBERS

The weak hop integrity protocol presented in the previous chapter can
detect message modification but not message replay. In this chapter, we
discuss how to strengthen this protocol to make it detect message replay as
well. We present the strong hop integrity protocol in two steps. First, we
present a protocol that uses "soft sequence numbers" to detect and discard
replayed data messages. Second, we show how to integrate this soft
sequence number protocol into the weak integrity check protocol presented
in the previous chapter to construct the strong integrity check protocol. The
combination of the secret exchange protocol and the strong integrity check
protocol is the strong hop integrity protocol.

1. SOFT SEQUENCE NUMBER PROTOCOL

Before we introduce the soft sequence number protocol, we use a simple
protocol to illustrate the need for sequence numbers in detecting message
replay. Consider a protocol that consists of two processes u and v. Process u
continuously sends data messages to process v. Assume that there is an
adversary that attempts to disrupt the communication between u and v by
inserting (i.e. replaying) old messages in the message stream from u to v. In
order to overcome this adversary, process u attaches an integer sequence
number s to every data message sent to process v. To keep track of the
sequence numbers, process u maintains a variable nxt that stores the
sequence number of the next data message to be sent by u and process v
maintains a variable exp that stores the sequence number of the expected
data message to be received by v. We call this protocol "hard sequence
number protocol", because process u always remembers the next sequence

6 8 Chapter 7

number to be sent, and process v always remembers the next sequence
number it expects to receive.

To send the next data(s) message, process u assigns s the current value of
variable nxt, then increments nxt by one. When process v receives a data(s)
message, v compares its variable exp with s. If exp 5 s, then v accepts the
received data(s) message and assigns exp the value s + 1; otherwise v
discards the data(s) message. Processes u and v of this protocol can be
specified as follows.

process u
var nxt : integer {sequence number of next sent message)
begin

true -+
send data(nxt) to v;
nxt := nxt + 1

end

process v
var s : integer {sequence number of received message)

exp : integer {sequence number expected next)
begin

rcv data(s) from u -+
if s < exp 4

{reject message; report an adversary)
skip

[I exp I s -+
{accept message)
exp := s + 1

ti
end

Correctness of this protocol is based on the observation that the predicate
exp 5 nxt holds at each (reachable) state of the protocol. However, if due to
some fault (for example an accidental resetting of the values of variable nxt)
the value of exp becomes larger than value of nxt, then all the data messages
that u sends from this point, and until the value of nxt becomes equal to the
value of exp, will be wrongly discarded by v. Next, we describe how to
modify this protocol such that the number of messages, that can be wrongly
discarded when the synchronization between u and v is lost due to some
fault, is at most N, for some chosen integer N that is larger than one.

The modification consists of adding to process v t y o variables c and
cmax, whose values are in the range O..N-1. When process v receives a

Strong Hop Integrity Using Soft Sequence Numbers 69

data(s) message, v compares the values of c and cmax. If c z cmax, then
process v increments c by one (mod N) and proceeds as before, namely
either accepts the data(s) message if exp I s, or discards the message if exp >
s. Otherwise, if c = cmax, then v accepts the message, assigns c the value 0,
and assigns cmax a random integer in the range O..N-I. We call this
modified protocol "soft sequence number protocol" because process v at
some instants "forgets" the sequence number it expects to receive next, and
accepts the next received sequence number without question.

There are two considerations behind this modification. First, it guarantees
that process v never discards more than N data messages when the
synchronization between u and v is lost due to some fault. Second, it ensures
that the adversary cannot predict the instants when process v is willing to
accept any received data message, and so cannot exploit any such
predictions by sending replayed data messages at the predicted instants.

Formally, processes u and v in this protocol can be defined as follows.

process u
var nxt : integer {sequence number of next sent message)
begin

true -+
send data(nxt) to v;
nxt := nxt + 1

end

process v
const N : integer
var s : integer {sequence number of received message)

exp : integer {sequence number expected next)
c, cmax : 0 .. N-1

begin
rcv data(s) from u +

if s < e x p A c # c m a x +
{reject message; report an adversary)
c := (c + 1) modN

[I e x p I s v c = c m a x +
{accept message)
exp := s + 1;
if c # cmax +

c := (c + 1) mod N
[I c = cmax +

c := 0;
cmax := RANDOM(0, N-1)

fi
fi

end

Chapter 7

2. STRONG INTEGRITY CHECK PROTOCOL

Processes u and v of the soft sequence number protocol presented in
Section 7.1 can be combined with process pw of the weak integrity check
protocol to construct process ps of the strong integrity check protocol. A
main difference between processes pw and ps is that pw exchanges messages
of the form data(t, d), whereas ps exchanges messages of the form data(s, t,
d), where s is the message sequence number computed according to the soft
sequence number protocol, t is the message text, and d is the message digest
computed over the concatenation (s; t; scr) of s, t, and the shared secret scr.
Process ps in the strong integrity check protocol can be defined as follows.
(Process qs can be defined in the same way.)

process ps
const sp : integer

sq : array [O .. 11 of integer
N : integer

var s, t, d: integer
exp, nxt: integer
c, cmax : 0 . . N- 1

begin
rcv data(s, t, d) from qs +

if MD(s; t; sq[O]) = d v MD(s; t; sq[l]) = d +
if s < exp A c # cmax +

{reject message; report an adversary}
c := (c + 1) mod N

[I exp l s v c = cmax +
{accept message}
exp := s + 1;
if c # cmax +

c := (c + 1) mod N
[I c = cmax +

c := 0;
cmax := RANDOM(0, N-1)

fi
fi

[I MD(s; t; sq[O]) # d A MD(s; t; sq[l]) # d +

Strong Hop Integrity Using Soft Sequence Numbers

{report an adversary) skip
fi

[I true +
{p receives a data(s, t, d) from a router other than q and)
{checks that its encryption is correct and)
{its sequence number is within range)
RTMSG

[I true +
{either p receives a data(t) from adjacent host or)
{p generates the text t for the next data message)
RTMSG

end

The first and second actions of process ps have a statement RTMSG that
is defined as follows.

if NXT(t) = p +
{accept message)
skip

[I NXT(t) = q +
d := MD(nxt; t; sp);
send data(nxt, t, d) to qs;
nxt := nxt + 1

[I NXT(t) # p A NXT(t) # q -+
{compute next soft sequence number s)
{for sending data to NXT(t); compute d)
{as the message digest of the concatenation)
{of s, t and the secret for sending data to)
{NXT(t); forward data(s, t, d) to router NXT(t))
skip

fi

To verify the correctness of the strong integrity check protocol, we can
use the state transition diagram of this protocol in Figure 7.1, which
considers only the channel from process qs to process ps. (The channel from
ps to qs, and the channels from ps to any other strong integrity check process
in an adjacent router of p, can be verified in the same way.) This diagram
has four nodes that represent all possible reachable states of the protocol.
Every transition in the diagram stands for either a legitimate action (of
process ps or process qs), or an illegitimate action of the adversary.

72 Chapter 7

Note that because the strong integrity check protocol operates below the
secret exchange protocol in the protocol stack, we can assert that (sq in qs =

sq[O] in ps v sq in qs = sq[l] in ps) is an invariant in every state of the
strong integrity check protocol. We denote this invariant as I in the
specification in Figure 7.1.

U.0 = I A (V data(s, t, d) message in ch.qs.ps,
d = MD(s; t; sq) A (Head(data(s, t, d)) 3 s 2 exp in ps))

S:data R:data & Accept

M.0 = I A (V data(s, t, d) message in ch.qs.ps,
(-Head(data(s, t, d)) = d = MD(s; t; sq)) A

(Head(data(s, t, d)) 2 d # MD(s; t; sq)))

U.0

P.0 = I A (V data(s, t, d) message in ch.qs.ps,
d = MD(s; t; sq) A

(Head(data(s, t, d)) 3 s < exp in ps) A c # cmax in ps)

L:data

P.1 = I A (V data(s, t, d) message in ch.qs.ps,
d = MD(s; t; sq) A

(Head(data(s, t, d)) 3 s < exp in ps) A c = cmax in ps)
where
I = sq in qs = sq[O] in ps v sq in qs = sq[l] in ps

Figure 7-1. State transition diagram of the strong integrity check protocol.

M:data P:data

v v

A

R:data &
~ i ~ ~ ~ ~ d P:data

v

A

R:data &
Discard P:data

v

M.0

A

R:data &
Accept

P.0 P. 1

Strong Hop Integrity Using Soft Sequence Numbers 73

Initially, the protocol starts at state U.O. At state U.0, two legitimate
actions, namely the send action in qs that sends a data message, and the
receive action in ps that receives a data message, can be executed. Executing
either one of the two actions at state U.0 keeps the protocol in state U.O.

State U.0 is the only good state in the strong integrity protocol. The set of
transitions that leads the protocol from state U.0 to state U.0 constitutes the
good cycle of the protocol. If only legitimate actions of processes ps and qs
are executed, the protocol will stay in this good cycle indefinitely. Next, we
discuss the bad effects caused by the actions of an adversary, and how the
protocol can recover from these effects.

First, the adversary can execute a message loss action at states U.O. If the
adversary executes a message loss action at state U.0, the predicate that for
every data message data(s, t, d) in the channel from qs to ps, d = MD(s; t;
sq), still holds. Therefore, the protocol stays at state U.O.

Second, the adversary can execute a message modification action at state
U.0 causing the protocol to move to state M.O. The receive and discard
action executed by ps at state M.0 leads the protocol back to state U.O.

Third, the adversary can execute a message replay action at state U.O.
There are two cases to consider. First, if the replayed message data(s, t, d) is
too old such that the secret used to compute the message digest is different
from the current value of constant sq in process qs, then the protocol moves
to state M.0, and later returns to state U.0 as discussed above. Second, if the
replayed message data(s, t, d) is recent such that the secret used to compute
the message digest is equal to the current value of constant sq in process qw,
then the protocol moves either to state P.0 or to state P.1. With a high
probability of (cmax - 1) / cmax, the protocol moves to state P.0, and the
replayed message will be received and discarded by ps because the value of
field s in the message indicates that the message is replayed. With a
probability of 1 / cmax, the protocol moves to state P.l, and the replayed
message will be received and accepted. In both cases the protocol returns to
state U.O.

From the state transition diagram, it is clear that each illegitimate action
by the adversary will eventually lead the protocol back to U.0, which is a
good state. Once the protocol is in a good state, the protocol can progress in
the good cycle. Moreover, if the adversary replays a recent data message, the
replayed message will be detected and discarded with high probability (cmax
- 1) / cmax. Hence the following two theorems about the strong integrity
check protocol are proved.

Theorem 7.1 In the absence of an adversary, a network that executes the
strong integrity check protocol follows the good cycle, consisting of a single

74 Chapter 7

transition fiom state U. 0 to state U.0, and will stay in this good cycle
indefinitely.

Theorem 7.2 In the presence of an adversary, a network that executes the
strong integrity check protocol will converge to the good cycle in a finite
number of steps after the adversary finishes executing any number of
message loss or message modification actions. This network will also
converge to the good cycle in afinite number of steps with a high probability
of (cmax - I) / cmax after the adversary finishes executing any number of
message replay actions.

The protocols used by the weak hop integrity protocol and the strong hop
integrity protocol have several novel features that make them correct and
efficient. First, whenever the secret exchange protocol attempts to change a
secret, it keeps both the old secret and the new secret until it is certain that
the integrity check of any future message will not be computed using the old
secret. Second, the integrity check protocol computes a digest at every router
along the message route so that the location of any occurrence of message
modification can be determined. Third, the soft sequence number protocol
makes the strong hop integrity protocol tolerate any loss of synchronization
between any two adjacent routers.

Chapter 8

STRONG HOP INTEGRITY USING HARD
SEQUENCE NUMBERS

Recall that in the strong hop integrity protocol presented in Chapter 7, we
use soft sequence numbers to achieve strong hop integrity. We call those
sequence numbers "soft" because at some random instants the receiving
process forgets the last kept sequence number and accepts the next sequence
number received from the sending process. There are two considerations
behind the designing of soft sequence numbers. First, we want to limit the
number of discarded messages during the period when the sending process
and the receiving process lose synchronization of their sequence numbers.
Therefore, we make the receiving process accept the newest sequence
number from the sending process once in a while, so that the two processes
can regain their synchronization shortly after their synchronization was lost.
Second, we do not want to make it easy for an adversary to guess the instants
at which the receiving process will accept any sequence number received
next. If the adversary can guess the instant of acceptance correctly, it can
make the receiving process accept a replayed sequence number at this instant
and replay more messages afterward. Therefore, we randomize the instant of
acceptance.

Soft sequence numbers help achieve strong hop integrity almost
flawlessly. The only flaw, however, is that there is still a slight chance that
an adversary might correctly guess the instant of acceptance even though the
instant is randomized. An alternative to avoid this slight possibility is to use
hard sequence numbers to achieve strong hop integrity, such that the two
processes stick to their sequence numbers and the adversary has no chance to
try its luck. However, one problem with hard sequence numbers is that the
sending process and the receiving process will lose synchronization of their
sequence numbers when a reset occurs. In one case as stated in Section 7.1,

76 Chapter 8

the receiving process may discard a lot of fresh data messages after the
sending process wakes up from a reset. In another case as will be shown in
Section 8.1, the receiving process may accept replayed data messages after
the receiving process wakes up from a reset. We do not want any one of the
two bad cases to occur, and therefore we need to first solve the problems due
to resets before hard sequence numbers can be exploited.

In this chapter, we propose a reset-tolerant version of hard sequence
numbers, such that hard sequence numbers can be used as a substitute of soft
sequence numbers to achieve strong hop integrity. This chapter is organized
as follows. In Section 8.1, we review the hard sequence number protocol,
which was first presented in Section 7.1, and elaborate the problems with
this protocol in presence of resets. Then in Section 8.2, we discuss how the
two operations, "SAVE" and "FETCH", can be added to make the hard
sequence number protocol tolerate resets, and formally specify the new
protocol. We show in Section 8.3 that the new protocol can converge to the
resynchronization of the two processes after a reset occurred, and we show
in Section 8.4 how "SAVE and "FETCH can be applied in the strong hop
integrity protocol as an alternative of soft sequence numbers. Finally, we
discuss tradeoffs between soft sequence numbers and hard sequence
numbers in Section 8.5.

HARD SEQUENCE NUMBER PROTOCOL

In Section 7.1, we presented a hard sequence number protocol. In that
protocol which consists of a sending process u and a receiving process v,
process u attaches an integer sequence number s to every data message sent
to process v in order to overcome an adversary that replays old messages in
the message stream from u to v. Process u maintains a variable nxt that
stores the sequence number of the next data message to be sent, and process
v maintains a variable exp that stores the sequence number of the next data
message that v expects to receive. To send the next data(s) message, process
u assigns s the current value of variable nxt, then increments nxt by one.
When process v receives a data(s) message, v compares its variable exp with
s. If exp I s, then v accepts the received message and assigns exp the value s
+ 1 ; otherwise v discards the message. Processes u and v of this protocol are
specified as follows.

process u
var nxt : integer {sequence number of next sent message)
begin

true +

Strong Hop Integrity Using Hard Sequence Numbers

send data(nxt) to v; nxt := nxt + 1
end

process v
var s : integer {sequence number of received message}

exp : integer {sequence number expected next}
begin

rcv data(s) from u -+
if s < exp -+

{reject message; report an adversary}
skip

[I exp I s -+
{accept message}
exp := s + 1

fi
end

The hard sequence number protocol presented above can be used to
detect replayed messages as long as both u and v stay up and never get reset.
If process v ever encounters a reset, then an unbounded number of replayed
messages can be accepted by v after v wakes up from the reset. Moreover, if
process u ever encounters a reset, then an unbounded number of fresh
messages that are sent by u after u wakes up can be discarded by v. In the
following three paragraphs, we explain how these two bad possibilities can
occur.

First, consider the case where process v is reset and later wakes up. When
v wakes up, v has lost the last value of its variable exp. Thus v resumes its
operation with its variable exp set to 0, and any (positive) sequence number
received next by v will be accepted by v. Suppose the last fresh sequence
number received by v before the reset is x, which is unbounded. In this case,
an adversary can replay in ascending order all the messages with sequence
numbers in the range from 1 to x, and all these replayed messages will be
unsuspectedly accepted by v.

Next, consider the case where process u is reset and later wakes up.
When u wakes up, u has lost the last value of its variable nxt that it will use
on the next message to be sent to v. Thus u resumes its operation with nxt set
to 0, and the next fresh message u sends to v will be data(O), and the next
fresh message u sends to v will be data(l), and so on. Suppose the current
value of variable exp in v is y, which is unbounded. In this case, all fresh
messages sent from u to v with sequence numbers less than y will be
regarded as replayed messages and discarded by v.

7 8 Chapter 8

Last, consider the case where both process u and process v are reset and
later wake up. When u wakes up, u resumes its operation in the protocol with
nxt set to 0. When v wakes up, v resumes its operation with exp set to 0. In
this case, an adversary gets the chance to replay messages sent before u was
reset. The adversary can disrupt the communication between u and v by
replaying a message with sequence number z that is larger than the current
value of variable nxt in u, so that v is forced to set its variable exp to z. As a
result, all fresh messages sent from u to v with sequence numbers in the
range between nxt and z will be regarded as replayed messages and will be
discarded by v.

In the next section, we propose two operations, "SAVE" and "FETCH",
that can be added to the hard sequence number protocol to help the two
processes regain synchronization of their sequence numbers after a reset
occurred to one or both of them.

2. A PROTOCOL WITH SAVE AND FETCH
OPERATIONS

As we have shown, the hard sequence number protocol is susceptible to
reset because computer u (or v) forgets the last sent (or received) sequence
number after a reset occurs to it. Therefore, we propose two operations,
"SAVE" and "FETCH", that can be used to somewhat "reserve" the
sequence number and thus can protect the communication between u and v
from the impact of resets. The functions of SAVE and FETCH are
straightforward. When the SAVE operation is executed at a computer, the
last sequence number in the memory of the computer is stored in the
persistent memory (e.g. the hard disk) of the computer. It is realistic to
assume that the content of the persistent memory of the computer will not be
corrupted or erased by a reset of that computer. When the FETCH operation
is executed at a computer, the last sequence number stored in the persistent
memory is loaded from the persistent memory into the memory. (SAVE and
FETCH can be implemented by write-to-file and read-from-file operations in
an operating system.)

SAVE and FETCH can be used in designing a new hard sequence
number protocol that can avoid the impact of resets. A computer that
executes the hard sequence number protocol can regularly execute SAVE to
store a copy of a recent sequence number in its persistent memory. If this
computer is reset and wakes up shortly, then although the last sequence
number kept in its memory has been forgotten, this computer can execute
FETCH to reload the sequence number stored in its persistent memory into

Strong Hop Integrity Using Hard Sequence Numbers 79

its memory, such that this computer does not need to restart its sequence
number from 0.

To make sure the new protocol is correct, however, two considerations
need to be addressed before the reloaded sequence number can be used for
the next sent (or received) message of the resumed traffic. Firstly, the
execution of SAVE takes some time, during which the computer can still
send (or receive) messages. Hence there can be a gap between the reloaded
sequence number (which is the last stored sequence number) and the
sequence number of the last message sent (or received) by this computer
before the reset. If a computer that plays the sender uses the reloaded
sequence number directly and the size of the gap between the reloaded
sequence number and the last sent sequence number before the reset is n,
then the first n sent messages will be regarded as replayed messages by the
receiver and will be discarded. If a computer that plays the receiver uses the
reloaded sequence number directly, then an adversary can replay old
messages whose sequence numbers are in the gap between the reloaded
sequence number and the last received sequence number. These replayed
messages will be accepted by the receiver because their sequence numbers
look fresh to the receiver. In order to avoid these bad possibilities, a leap
number should be added to the reloaded sequence number to leap over the
gap before it can be used. This leap number must be large enough to ensure
that after adding it to the reloaded sequence number, the resulting new
sequence number is larger than all previously used sequence numbers. We
will discuss how large the leap number should be in the next section.

Secondly, another reset can occur to the same computer that just waked
up and has not yet executed the first SAVE after the last reset. In this case,
those sequence numbers that have been used before the second reset occurs
will be reused (or can be replayed) after the computer wakes up from the
second reset. To avoid this problem, the computer should first execute a
SAVE after the leap number is added to the reloaded sequence number. If
this computer plays the sender, it will wait for the SAVE to finish before it
sends the next message. If this computer plays the receiver, it will
temporarily keep the messages that are received before the SAVE finishes in
a buffer. After the SAVE completes its execution, messages kept in the
buffer will be either delivered or discarded based on their sequence numbers.

Moreover, we have to decide how frequently the SAVE operation should
be executed. On one hand, we do not want to execute SAVE too frequently
because this can generate too much overhead. On the other hand, we do not
want to execute SAVE too infrequently so that the saved sequence number is
not recent enough. Our choice of the interval between two consecutive
SAVES is the maximum number of messages that can be sent (or received)
during a time period that is equal to the execution time of SAVE. For

80 Chapter 8

example, on a Pentium I11 730-MHz machine running Linux 2.4.18, a write-
to-file operation takes loops and sending a 1000-byte message takes 4ps on
average. In this case, we can set the interval between two consecutive
SAVEs to be at least 25.

Note that we measure the interval between two consecutive SAVEs in
terms of the number of messages, rather than in terms of time, because the
rate of message generation may change over time. At some time, the rate of
message generation can be very low. In this case, measuring the interval in
terms of time leads to wasteful SAVEs because when the interval to the next
SAVE expires, the sequence number has not advanced much since the last
SAVE was executed. Note also that the amount of time taken by every
execution of SAVE can be different according to the current load of CPU.
Therefore, we pick a reasonable upper bound on the execution time of
SAVE, and determine the maximum number of messages that can be sent (or
received) during this amount of time.

Next, we present the new hard sequence number protocol augmented
with SAVE and FETCH. The new process u has two new inputs K, and T,,
and has two new variables 1st and wait. Input K, is the interval between the
sequence numbers stored by two consecutive SAVE operations in process u.
Input T,, is the time needed to execute a SAVE operation at u. Variable 1st is
the last sequence number stored by a SAVE operation, and variable wait is a
boolean that is set to true only when process u is reset. The new process u
can be specified as follows.

{Ku ' 0)
{next to be sent, init. 0)
{last stored, init. 0)
{initially false)

process u
inp K,, T , : integer
var nxt : integer

1st : integer
wait : boolean

begin
- wait -+

send data(nxt) to v;
nxt := nxt + 1;
if nxt 2 K, + 1st -+

1st := nxt;
&SAVE(lst) {execute SAVE in background)

[I nxt < K, + 1st -+
skip

fi

[I (process u is reset) -+
wait := true

Strong Hop Integrity Using Hard Sequence Numbers

[I (process u wakes up after a reset) +
FETCH(nxt);
SAVE(nxt + 2K,); {execute SAVE in foreground)
nxt := nxt + 2K,;
1st := nxt;
wait := false

end

In the first action of process u, when variable wait is false, u sends the
next message data(nxt) to process v and increment nxt by 1. Then, u checks
whether nxt has become K, greater than the last stored sequence number 1st.
If so, u executes SAVE to store nxt into persistent memory. (This SAVE
should be executed in the background so that it does not block the normal
communication between u and v.) In the second action, when u is reset,
variable wait is set to true. In the third action, when u wakes up after a reset,
u executes FETCH(nxt) to reload the last stored sequence number into
variable nxt, executes SAVE(nxt + 2K,) to store the result of adding the leap
number to the reloaded sequence number, and sets nxt and 1st to their new
values after the SAVE operation has finished. Then, variable wait is set to
false, so that the first action is enabled again and u can send the next
message data(nxt) to v.

The new process v, that is augmented with SAVE and FETCH, has two
new inputs K, and T,, and two new variables 1st and wait. Input K, is the
interval between the sequence numbers stored by two consecutive SAVE
operations in process v. Input T, is the time needed to execute a SAVE
operation at v. Variable 1st is the last sequence number stored by a SAVE
operation, and variable wait is a boolean that is set to true only when process
v is reset. The new process v can be specified as follows.

process v
inp K,, T, : integer {Kv > 0)
var exp : integer {expected to receive, init. 0)

1st : integer {last stored, init. 0)
s : integer
wait : boolean {initially false)

begin
rcv data(s) from u +

if -wait +
if s < exp +

{reject message; report an adversary)
skip

Chapter 8

[I exp I s +
{accept message) exp := s + 1

fi ;
if exp 2 K, + 1st -+

1st := exp;
&SAVE(exp) {execute SAVE in background)

[I exp < K, + 1st +
skip

fi
[I wait -+

{discard message) skip
fi

[I (process v is reset) +
wait := true

[I (process v wakes up after a reset) -+
FETCH(exp);
SAVE(exp + 2Kv); {execute SAVE in foreground)
exp := exp + 2Kv;
1st := exp;
wait := false

end

Process v has three actions. In the first action, v receives data(s) from u
and checks whether variable wait is true. If v is not waiting, then v decides
whether to discard or deliver the message according to the value of s and the
value of exp, and then checks whether exp has become at least K, greater
than the last stored sequence number 1st. If so, v executes SAVE(exp) in the
background to store exp into persistent memory. If v is waiting, then v
discards the message. In the second action, when v is reset, variable wait is
set to true. In the third action, when v wakes up after a reset, v executes
FETCH(exp) to reload the last stored sequence number, executes SAVE(exp
+ 2K,) to store the result of adding the leap number to the reloaded sequence
number, and sets exp and 1st to their new values after the SAVE operation
has finished. Finally, variable wait is set to false.

Strong Hop Integrity Using Hard Sequence Numbers 83

3. CONVERGENCE OF NEW HARD SEQUENCE
NUMBER PROTOCOL

We are now ready to show why the sending process u and the receiving
process v in the hard sequence number protocol are guaranteed to converge
to a fresh sequence number after a reset. Our objective is to show that after
adding a leap number to the reloaded sequence number, the resulting new
sequence number is larger than the last sequence number used before the
reset occurs, hence no old sequence number can be reused to send fresh
message and no replayed message will be accepted by the receiver. We
analyze the aforementioned two cases: a reset occurs at the sending process
u, and a reset occurs at the receiving process v. (From the analysis of the two
cases it is straightforward to verify the third case when both process u and
process v are reset.) After showing that the new sequence number used after
the reset is guaranteed to be fresh, we will show that the following two
conditions hold under the new protocol. First, when process u is reset, a
bounded number of sequence numbers will be lost but no fresh message will
be discarded by process v if no message reorder occurs. Second, when
process v is reset, the number of discarded fresh messages is bounded.

We start with the analysis of the case in which a reset occurs at process u.
Assume that the reset occurs while process u is executing a SAVE to store
the sequence number nxt into persistent memory. From Figure 8.1, there are
two possible cases to consider: the reset occurs before the current SAVE
finishes, or the reset occurs after the current SAVE finishes.

SAVE(s-K,) SAVE(s)

s+tl s+K, sequence
number
at process u

t' (t' < K,)

SAVE(s) Reset or Reset SAVE(s+K,)
starts occurs occurs starts

here here

Figure 8-1. Analysis of reset occurring at process u.

To check the first case, suppose the reset occurs at sequence number s +
t, where t < K, because the next sequence number to be stored will be s + K,.

84 Chapter 8

The sequence number fetched by u after it wakes up is s - Ku, as SAVE(s)
has not completed. The gap between the reset sequence number and the
fetched sequence number can be computed by

(S + t) - (S - K,) I (S + K,) - (S - K,) = 2Ku

To check the second case, suppose the reset occurs at s + t', where t' <
K,,. The sequence number fetched by u after it wakes up is s, as SAVE(s) has
completed. The gap between the reset sequence number and the fetched
sequence number can be computed by

(S + t') - s I (S + K,) - s = K,

Therefore, if we add a leap number of 2Ku to the fetched sequence
number, as specified in process u, the next sequence number used by u is
guaranteed to be fresh.

Next, we analyze the case when a reset occurs at process v. Assume that
a reset occurs while process v is executing a SAVE to store the sequence
number r into persistent memory. From Figure 8.2, there are two possible
cases to consider: the reset occurs before the current SAVE finishes, or the
reset occurs after the current SAVE finishes.

SAVE(r-K,) SAVE(r)

r+tf r+K, sequence
number
at process v

t' (t' < K,)

SAVE(r) Reset or Reset SAVE(r+K,)
starts occurs occurs starts

here here

Figure 8-2. Analysis of reset occurring at process v.

To check the first case, suppose the reset occurs at sequence number r +
t, where t < K, because the next sequence number to be stored will be r + K,.
The sequence number fetched by q after it wakes up is r - K,, as SAVE(r)
has not completed. The gap between the reset sequence number and the
fetched sequence number can be computed by

(r + t) - (r - K,) I (r + K,) - (r - K,) = 2K,

Strong Hop Integrity Using Hard Sequence Numbers 8 5

To check the second case, suppose the reset occurs at r + t', where t' <
K,. The sequence number fetched by v after it wakes up is r, as SAVE(r) has
completed. The gap between the reset sequence number and the fetched
sequence number can be computed by

(r + t') - r S (r + K,) - r = Kv

Therefore, if we add a leap number of 2K, to the fetched sequence
number, as specified in process v, it is guaranteed that v will not accept any
replayed message.

Next, we show that the hard sequence number protocol satisfies the
following two properties.

I. When the sender is reset, no more than 2K,fresh sequence numbers
are lost and no fresh messages are discarded by the receiver if no message
reorder occurs.

Note that process u may lose some fresh sequence numbers after a reset
because u adds a leap number 2Ku to the reloaded sequence number.
Suppose s-K, is the last stored sequence number when a reset occurs at u.
Then when u wakes up, u resumes with sequence number s+K, because u
first reloaded s-K, and added 2Ku to it. In this case, u loses no more than 2Ku
fresh sequence numbers because u resumes with s+K, and all numbers
between s-K, and s+K, become unusable. Therefore, the total number of lost
sequence number is bounded by 2K,. Moreover, since s+K, is larger than all
previously used sequence numbers, no fresh message will be discarded by
the receiver unless any fresh message sent after the reset arrives earlier than
any fresh message sent before the reset.

11. When the receiver is reset, no more than 2K, fresh messages are
discarded by the receiver.

Note that process v may discard some fresh messages after a reset
because q adds a leap number 2Kv to the reloaded sequence number.
Suppose r-K, is the last stored sequence number when a reset occurs at v.
Then when v wakes up, v resumes with sequence number r+K, because v
first reloaded r-K, and added 2Kv to it. The worst case that can occur is that
r-Kv+l has not been received by v when a reset occurs. In this case, v may
discard at most 2Kv fresh messages if no message loss occurs, because v
resumes with r+K,, and all fresh messages with sequence numbers between
r-K, and r+K, will be regarded as replayed messages by v. Therefore, the
total number of discarded fresh messages is bounded by 2Kv.

86 Chapter 8

4. APPLICATION OF SAVE AND FETCH IN
STRONG HOP INTEGRITY PROTOCOL

We have shown that the sending process u and the receiving process v in
the hard sequence number protocol, with the help of SAVE and FETCH, are
guaranteed to converge to a fresh sequence number after a reset. Next, we
discuss how SAVE and FETCH can be integrated with the strong integrity
check protocol, such that the protocol can recover from resets.

To integrate SAVE and FETCH with the strong integrity check protocol,
the following four steps can be followed. First, in the first action of process
ps in the protocol, we need to add statements to periodically execute SAVE,
and add statements to put incoming messages in a buffer when ps is waiting
for a SAVE that executes after a FETCH to finish. Second, in the RTMSG
statement, we also need to add a statement to periodically execute SAVE.
Third, we need to add an action to process ps to execute FETCH and SAVE
when process ps wakes up from a reset. Fourth, we need to add a timeout
action to set up the sequence number properly after a post-reset SAVE
finishes its execution.

Similarly, the SAVE and FETCH operations can be used in the anti-
replay window protocol in IPsec to make the protocol reset-tolerant [22],
such that security associations (SA) that are affected by resets do not need to
be deleted and reestablished as proposed in previous works [19,30].

5. TRADEOFFS BETWEEN SOFT SEQUENCE
NUMBERS AND HARD SEQUENCE NUMBERS

Although both soft sequence numbers and hard sequence number can be
used to achieve strong hop integrity, the two approaches are different and
each of them has its own advantages and disadvantages. In this section, we
discuss the tradeoffs between soft sequence numbers and hard sequence
numbers.

First, we discuss the implementation complexity of the two approaches.
Soft sequence numbers are easier to implement because they do not require
SAVE and FETCH operations and do not require persistent memory. By
contrast, implementation of hard sequence numbers requires write and read
operations, namely SAVE and FETCH, and a real-time timeout for
executing SAVE after FETCH. Moreover, a good upper bound of the
number of sent message and a good upper bound of the number of received
message during the execution delay of SAVE are also needed by hard
sequence numbers.

Strong Hop Integrity Using Hard Sequence Numbers 87

Second, we discuss the degrees of security of the two approaches. Soft
sequence numbers can only provide high, but not complete, protection
against message replay attacks. This is because there is a small chance that
an adversary may correctly guess the point that the receiving process accepts
next received sequence number anyway. By contrast, hard sequence
numbers can provide complete protection against message replay attacks,
because both the sending process and the receiving process stick to the
sequence number they keep, and an adversary has no chance to try its luck.

Chapter 9

IMPLEMENTATION CONSIDERATIONS

We have introduced in Chapters 5 to 8 the three components of hop
integrity protocol suite, namely the secure address resolution protocol, the
weak hop integrity protocol, and two versions of the strong hop integrity
protocol that use soft sequence numbers and hard sequence numbers
respectively. We discussed their functions, specified each of the protocols in
a formal fashion using a variation of Abstract Protocol Notation, and verified
the correctness of each protocol using state transition diagrams. All the
protocols are stateless, require small overhead, and do not constrain the
network protocol in the routers in any way. Thus, we believe they are
compatible with IP in the Internet.

In this chapter, we discuss implementation considerations of hop
integrity protocols and acceptable values for the inputs of each of these
protocols. In Section 9.1, we discuss several issues concerning the
implementation of keys and secrets. In Section 9.2, we discuss acceptable
lengths of timeout periods used in the secret exchange protocol. In Section
9.3, we discuss considerations about sequence numbers used in the strong
integrity check protocol. Finally in Section 9.4 we discuss message overhead
of the strong integrity check protocol.

1. KEYS AND SECRETS

In the secret exchange protocol presented in Chapter 6, we define keys
with two inputs Rp and B,. Input Rp is a private key for router p, and input B,
is a public key for router q. These are long-term keys that remain fixed for
long periods of time (say one to three months), and can be changed only off-
line and only by the system administrators of the two routers. Thus, these

90 Chapter 9

keys should consist of a relatively large number of bytes, say 128 bytes
(1024 bits) each. There are no special requirements for the encryption and
decryption functions that use these keys in the secret exchange protocol.

In the integrity check protocols in Chapters 6 and 7, we define secrets
with two inputs sp and sq and define the integrity check computation
function as function MD. Inputs sp and sq are short-lived secrets that are
updated every 4 hours. Thus, this key should consist of a relatively small
number of bytes, say 8 bytes. Function MD is used to compute the digest of
a data message. Function MD can compute in two steps as follows. First, the
standard function MD5 [44] is used to compute a 16-byte digest of the data
message. Second, the first 4 bytes from this digest constitute our computed
message digest. (Computing a message digest over a 1024-byte message
using MD5 is timed at just 0.037 ms on a Pentium I11 730MHz machine
running Linux. It is not a significant overhead to a router.)

2. TIMEOUTS

In the secret exchange protocol, we define two needed timeout values
with two inputs te and tr. Input te is the time period between two successive
secret exchanges between pe and qe. On one hand, this time period should
be small so that an adversary does not have enough time to deduce the
secrets sp and sq used in computing the integrity checks of data messages.
On the other hand, it should be large so that the overhead that results from
the secret exchanges is reduced. An acceptable value for te is around 4
hours.

Input tr is the timeout period for resending a rqst message when the last
rqst message or the corresponding rply message was lost. The value of tr
should be an upper bound on the round-trip delay between the two adjacent
routers. If the two routers are connected by a high speed Ethernet, then an
acceptable value of tr is around 4 seconds.

3. SEQUENCE NUMBERS

The sequence numbers in the strong integrity check protocol presented in
Chapters 7 and 8 can be made recyclable. Note that the sequence numbers
used in the strong integrity check protocol are specified as unbounded, for
the simplicity of our presentation but without loss of generality. In practice,
there is an upper bound on the sequence number, because we need to
determine how many bits should be allocated to the sequence number field.
However, two problems arise when bounded sequence numbers are used.

Implementation Considerations 9 1

First, the sequence number wraps around when it reaches the upper bound.
At the instant that the sequence number wraps around, a smaller sequence
number looks fresher than a greater sequence number. Thus, if the shared
secret sq between process ps and process qs remains the same during the
whole round of the sequence number, then when ps receives from qs a
message whose sequence number just wraps around, it cannot distinguish
whether the message is fresh or replayed from the last round. Second, the
received sequence numbers may not be consecutive because messages may
get lost in their transit. Thus, when process ps receives from process qs a
message whose sequence number is smaller than the value of exp, there are
two possibilities that process ps has to distinguish: either the message is a
fresh message whose sequence number just wraps around (all the messages
between the last one and this one are lost in transit), or the message is indeed
a replayed message.

The above two problems can be overcome if the following two
requirements are satisfied. First, the shared secret is updated at least once
during every round of the sequence number, such that an adversary cannot
take any message in the last round and replay it in the current round. Second,
the upper bound of the sequence number is chosen large enough, such that
no loss of consecutive messages can confuse process ps on its judgment of a
message's freshness. Assume that we choose S as the upper bound of
sequence number, and te as the time period between two successive secret
exchanges. Also assume that the maximum rate that messages can be
transmitted in the network is R, and the maximum number of consecutive
messages that can get lost in their transit over the network is L. Then the
above two requirements can be translated into the following two formulas:

In a usual Ethernet, at most 800 messages can be sent in a second.
Therefore, in the period of 4 hours, which is the value we choose for timeout
period te, at most 11,520,000 messages can be sent. Using 4 bytes to store
the sequence numbers is a proper choice with considerations of covering the
maximum number of consumed sequence numbers in timeout period te and
aligning with the original IP header.

As discussed in Chapter 7, input N, which is the upper bound for random
integer cmax, needs to be much larger than 1. For example, if we choose N
to be 200, then the maximum number of messages that can be discarded
wrongly whenever synchronization between two adjacent routers is lost is

92 Chapter 9

200, and the probability that an adversary who replays an old message will
be detected is 99 percent.

4. MESSAGE OVERHEAD

The message overhead of the strong integrity check protocol is about 8
bytes per data message: 4 bytes for storing the message digest, and 4 bytes
for storing the sequence number of the message.

We propose to add the message digest and sequence number used by the
strong integrity check protocol to the IP options in the IP header of each
message. IP options are auxiliary fields used mainly for network control or
testing purposes. They are added at the tail of the standard 20-byte IP
header, and the total length of all IP options in a message can be as much as
40 bytes because the maximum length of IP header is 60 bytes. Special
options for the message digest and sequence number can be defined and
inserted into the IP options field of each message.

Chapter 1 0

OTHER USES OF HOP INTEGRITY

The three protocols in the hop integrity protocol suite, namely secure
address resolution protocol, weak hop integrity protocol, and strong hop
integrity protocol, can be used to counter most denial-of-service attacks,
because they satisfy the three conditions of hop integrity and therefore can
discard most denial-of-service attack messages at their first hops. What is
even better, though, is that according to our investigation, we discovered that
hop integrity can be used to solve other network security problems besides
preventing denial-of-service attacks.

In this chapter, we present four other applications of hop integrity. In
Section 10.1, we present an application of hop integrity in the mechanism of
mobile IP. In Section 10.2, we present an application of hop integrity in the
mechanism of multicast. In Section 10.3, we discuss how to make routing
protocols more secure. Finally in Section 10.4, we discuss an application of
hop integrity to provide security for ad hoc networks and sensor networks. In
each section, we first give an overview of the mechanism itself. Then, we
discuss a network security problem that can disrupt this mechanism. Finally,
we show how hop integrity can be used to solve the problem.

MOBILE IP

Mobile IP [41] is a mechanism designed to accommodate the
communication need of mobile computers. According to IP version 4, the IP
address of a computer uniquely identifies the computer's point of attachment
to the Internet. Therefore, when a mobile computer visits a foreign
subnetwork, this computer must change its IP address such that messages
destined to this computer can be delivered to it. However, changing IP

94 Chapter 10

address along with the change of location makes a computer lose its current
transport and application layer connections, because higher-layer
connections are dependent on the computer's IP address. Mobile IP provides
the feature that a mobile computer can keep its IP address by registering a
foreign agent in the foreign subnetwork with the home agent in its home
subnetwork. The foreign agent registered by the mobile computer then
works with the home agent to accomplish the delivery of IP messages
destined to the mobile computer.

According to mobile IP, while a mobile computer c is visiting a foreign
subnetwork F, IP messages destined to mobile computer c are routed
indirectly, and IP messages generated at mobile computer c are routed
directly. The indirect routing of an IP message destined to c proceeds in
three steps. First, the IP message is routed toward the home subnetwork H of
c and is intercepted by the home agent ha of c in its home subnetwork H.
Second, ha forwards the message in a tunnel to the foreign agent fa of c in
the foreign subnetwork F. Third, fa forwards the IP message over F to
mobile computer c. This procedure of indirect routing is illustrated in Figure
10.1.

(1) Message m destined to c mtercepted by ha

(2) ha tunnles m to fa

(3) fa forwards rn to c

Figure 10-1. Indirect routing in mobile IP.

The direct routing of an IP message generated at the mobile computer
proceeds in two steps. First, mobile computer c forwards the IP message
over the foreign subnetwork F to the foreign agent fa. Second, fa and all
subsequent routers forward the IP message towards its intended ultimate
destination.

However, the aforementioned direct routing causes the following serious
problem. When foreign agent fa forwards for mobile computer c a message
m to next router q, q applies ingress filtering to m and discovers that the
original source of m (namely mobile computer c) is not consistent with

Other Uses of Hop Integrity 9 5

where m came from (namely foreign agent fa). Thus, q ends up discarding m
although m is a legitimate message. This problem is illustrated in Figure
10.2.

(1) c sends out message m via fa of c

(2) fa forwards m to next router q

(3) q discovers inconsistent source and

discards m

agent

Figure 10-2. Problem with direct routing in mobile IP.

In RFC 3024 [35], reverse tunneling for mobile IP was proposed to solve
this problem. This scheme, designed to be symmetric to indirect routing on
purpose, requires that every IP message generated at mobile computer c is
first forwarded in a tunnel to the home agent ha of the mobile computer, and
then routed toward its ultimate destination by home agent ha. When ha
forwards a message m generated at the mobile computer to next router q', q'
applies ingress filtering to m and discovers that the original source of m
(namely mobile computer c) is consistent with where m came from (namely
home agent ha). Thus, q' forwards m toward its ultimate destination as usual.
However, one problem with reverse tunneling is that the cost of reverse
tunneling is expensive. Every IP message generated at mobile computer c
needs to unnecessarily travel all the way to home agent ha before it can be
routed toward its ultimate destination, no matter where the ultimate
destination is. Reverse tunneling can be illustrated as in Figure 10.3.

9 6 Chapter 10

--I-_-

--
(I) c sends out message m via fa

(2) fa tunnels rn to ha

(3) ha forwards m toward dest~natlon

Figure 10-3. Reverse tunneling in mobile IP.

We find that if hop integrity is deployed in all the routers of the network,
then we can still use direct routing to route IP messages generated at mobile
computer c toward their ultimate destinations, thereby avoiding the
expensive cost of reverse tunneling. Recall that the problem with direct
routing is that when next router q receives a message m generated at mobile
computer c from foreign agent fa, q cannot determine from source address of
m whether m is forwarded by fa, or m carries forged source address.
However, if hop integrity is deployed in all the routers of the network, then
foreign agent fa will add an integrity check d to message m before it
forwards m to next router q. When next router q receives message m from fa,
q can correctly determine from the integrity check d contained in m whether
m was indeed forwarded by fa. If d is consistent with m, q accepts m,
computes a new integrity check d for the next router, and proceeds to
forward it toward its ultimate destination. Otherwise, if d is not consistent
with m, then q discards m. Thus the problem with direct routing is solved.
This procedure is illustrated in Figure 10.4.

Other Uses of Hop Integrity 97

(1) c sends out message m via fa

(2) fa adds integrity check d to m and

forwards m to next router q

(3) q verifies d with m, computes new d.

and forwards m toward destination

Figure 10-4. Direct routing in mobile IP with hop integrity.

2. SECURE MULTICAST

Multicast IP [lo] is a mechanism designed to transmit an IP message to a
set of zero or more hosts identified by a single IP destination address. Many
multicast protocols have been proposed and widely deployed in the Internet
to achieve multicast IP, for example the Distance Vector Multicast Routing
Protocol (or DVMRP, for short) [53] and the Protocol Independent Multicast
(PIM-DM for Dense Mode and PIM-SM for Sparse Mode) [l I]. Multicast
protocols are based on organizing the routers between the multicast source
and the multicast destinations into a rooted spanning tree. When a router in
the spanning tree receives a multicast IP message, it forwards a copy of the
message to every multicast destination that is adjacent to it and to every
router that is its "child" in the spanning tree. Figure 10.5 illustrated an
example of a multicast spanning tree. In this example, router r.0 forwards a
copy of message m to its two children in the spanning tree, namely r.1 and
r.2, and router r.1 forwards a copy of m to its child r.3 in the spanning tree
and to a multicast destination that is adjacent to it. Other routers in the
spanning tree proceed in a similar way to forward a copy of m to every
multicast destination in the spanning tree.

Chapter 10

routers

destinations

non-destinations

Figure 10-5. A multicast spanning tree.

Because IP messages can be lost while in transit, the multicast IP
protocols do not guarantee that every multicast message generated at the
multicast source is eventually received at every multicast destination.
Instead, the multicast IP protocols guarantee the following weaker
correctness criterion: if a multicast destination receives a multicast IP
message, then each multicast destination receives the same message with
high probability.

However, this weak correctness criterion can still be violated by a simple
adversary as follows. If the adversary inserts a new multicast IP message
between two routers in the middle of the spanning tree, or modifies a
message while the message is being transmitted between two routers in the
middle of the spanning tree, then only a small fraction of the multicast
destinations eventually receive the inserted or modified message. In an
example illustrated in Figure 10.6, an adversary sitting between router r.1
and router r.3 intercepts a message m forwarded by r.1 toward r.3, modifies
m to become m', and forwards m' to r.3. Router r.3 accepts the modified
message m' unsuspectingly, and forwards a copy of m' to the two multicast
destinations that are adjacent to it. As a result, the above weak correctness

Other Uses of Hop Integrity 99

criterion is violated because only the two multicast destinations that are
adjacent to r.3 eventually receives the modified message m'.

I routers

a destinations that receive
modified message

Figure 10-6. Corrcctncss criterion of multicast is violated by an adversary.

We discover that hop integrity can be used to keep the above weak
correctness criterion of multicast IP as follows. If hop integrity is deployed
between each pair of adjacent routers in the spanning tree, then each pair of
adjacent routers in the spanning tree share two unique secrets (one for each
direction) that can be used to compute an integrity check for every message
exchanged between this pair of routers. Therefore, every multicast IP
message exchanged between any pair of adjacent routers in the spanning tree
is protected by an integrity check added by the sending router. Because an
adversary does not know the secret shared between two adjacent routers, this
adversary cannot compute a correct integrity check for any multicast IP
message it inserts or modifies no matter where it is located. As a result, the
inserted or modified multicast IP messages will be detected and discarded by
the first router that receives them. For example, as shown in Figure 10.7,

100 Chapter 10

when router r.3 receives the modified message m', r.3 detects that m' is
modified because its integrity check does not match m'. Thus r.3 discards m'
and will not forward m' to any adjacent multicast destination.

I routers

destinations

non-destinations

Figure 10-7. IIop integrity keeps correctness criterion of multicast.

Therefore, if hop integrity is deployed between each pair of adjacent
routers in the spanning tree, then no multicast destination will receive the
inserted or modified multicast IP messages, and the weak correctness
criterion is maintained.

3. SECURITY OF ROUTING PROTOCOLS

Routers use routing protocols to compute the entire path or the next hop
for forwarding a message toward its ultimate destination. Most widely used
routing protocols, for example Routing Information Protocol (RIP for short)
[18, 331, Open Shortest Path First (OSPF for short) [36], and Reservation
Protocol (RSVP for short) [4], define their own routing messages that routers
can use to exchange routing information with other routers on the network.

Other Uses of Hop Integrity

The protection of routing messages is important because routing messages
carry routing information that is vital to the correctness of routing protocols.
If routing messages are messed up by an adversary, the operation of routing
protocols will be disrupted and normal data messages will not be correctly
routed toward their ultimate destination.

There have been a number of works on how to extend specific routing
protocols to make them more secure. However, if strong hop integrity
protocol is deployed in each pair of adjacent routers in a network, then
without any other security mechanism added, any routing protocol that is
used in the network gets secured. In the following three subsections, we
discuss how strong hop integrity can be applied to enhance the security of
RIP, OSPF, and RSVP.

3.1 Security of RIP

RIP [IS], which is shorthand for Routing Information Protocol, is a
widely used routing protocol for IP-based networks. RIP allows a router to
exchange routing information with its adjacent routers. It is a distance-vector
protocol, which means that the routing information a router receives from an
adjacent router is a vector of distances (measured in the number of hops)
from the adjacent router to all possible destinations in the network. Each
router then independently uses the routing information it receives from its
adjacent routers to compute its best routes to all possible destinations in the
network. (At the beginning of the execution of RIP, the routes computed by
one router may not conform to those computed by another router, because
initially a router does not have much routing information about the network.
However, with the periodical update, routing information of each router will
spread over the network and eventually the routes computed by different
routers will converge to be consistent with each other.)

There are two types of messages used in RIP, namely request and
response messages. A router can send a request message to its adjacent
routers to ask these routers to send back their current routing tables. A router
that receives a request message is required to return a response message that
contains its own routing table. Moreover, a router sends a response message
to all its adjacent routers every 30 seconds.

There is a security need for protecting the response messages that contain
routing information in RIP. In the absence of any protection for response
messages, an adversary sitting between two routers in the network can
disrupt the network in several ways. First, the adversary can either insert a
fake response message with incorrect routing information that it fabricates.
Second, the adversary can modify a correct response message and make its
routing information incorrect. Third, the adversary can also replay a previous

Chapter 10

response message whose routing information is no longer correct. When a
router receives a response message with incorrect routing information (from
the adversary), it will unsuspectingly accept the message and use the
incorrect routing information contained in the message to update its own
routing table. Even worse, the router will send its routing table (incorrect
now) to all adjacent routers. Consequently, the router may compute bad
routes for destinations because of the false routing information it receives,
and routing loops may be formed because of the spread of false routing
information.

The original RIP does not have any mechanism for authenticating the
response messages. In RIP version 2 [33], a simple authentication
mechanism is added to every response message in the protocol: a 16-byte
clear text password is inserted in every response message. This
authentication mechanism is easy, but cannot provide enough protection
because the adversary can easily copy the password and use it in the fake
response messages it inserts, or copy a response message and replay it later.

By contrast, strong hop integrity can protect a network against the three
attacks on RIP mentioned above. If strong hop integrity protocol is
implemented in each pair of adjacent routers in a network, then each pair of
adjacent routers in this network share two unique secrets (one for each
direction) that can be used to compute an integrity check for every message
exchanged between this pair of routers. Therefore, every RIP response
message exchanged between any pair of adjacent routers in the network is
protected by an integrity check and a (soft or hard) sequence number added
by the sending router. If an adversary launches against the network the first
attack or the second attack, namely inserting a fake RIP response message or
modifying a correct RIP response message between any pair of adjacent
routers, then the inserted or modified response message will be detected and
discarded by the router that receives this message because the integrity
check contained in this message is not correct. If an adversary launches
against the network the third attack, namely replaying a previous RIP
response message between any pair of adjacent routers, then the inserted or
modified response message will be detected and discarded by the router that
receives this message because the sequence number contained in this
message is not correct. Therefore, strong hop integrity can secure RIP
response messages, and can prevent an adversary from spreading false
routing information over a network.

3.2 Security of OSPF

OSPF [36], which is shorthand for Open Shortest Path First, is another
widely used routing protocol in the Internet. Unlike RIP, OSPF is a link-state

Other Uses of Hop Integrity 103

protocol, which means that each router gathers information on the state of its
links to all adjacent routers and sends the link state information to all other
routers in the network. The process that a router forwards to its adjacent
routers every link state message it receives without change is called
flooding. By periodical flooding, OSPF routers in the same network share a
synchronized database that is consisted of link state records. These records
represent the current topology of the network, and are used by OSPF routers
to compute their best routes to destinations.

OSPF protocol consists of three sub-protocols: Hello, Exchange, and
Flooding protocols. The Hello protocol is used to check whether an adjacent
router and the link connecting to that router are up or not. A link between
two routers is considered up if messages can go in both directions. After
establishing their two-way connectivity, two routers can use the Exchange
protocol to achieve the initial synchronization of their link state database by
exchanging database description messages. A link might change its state as
time goes by. Therefore, the router that is responsible for a link whose state
has changed needs to advertise the new state of the link to all other routers in
the network. This is done by using Flooding protocol to send a link state
update message to all other routers, and other routers who receive this
message should send back an acknowledgment message so as to keep every
router's link state database synchronized.

The possible security threats faced by OSPF can be listed as follows.
First, an adversary may insert a fake message that incorrectly advertises
some link as the best route to other networks, so as to congest that link with
high-volume misled traffic. Second, an adversary may modify a message
that contains the state information of an important link, so that an area in the
network might become unreachable. Third, an adversary may impersonate
some router in a network and may insert a fake update message that requests
all other routers to purge all link state records of the impersonated router. By
repeating this trick, the adversary can slash the link state database in every
router.

We discover that hop integrity can be used to counter the three attacks
mentioned above. If hop integrity is implemented in each pair of adjacent
routers in a network, then each pair of adjacent routers in this network share
two unique secrets (one for each direction) that can be used to compute an
integrity check for every message exchanged between this pair of routers.
Therefore, every hello message, every database description message, every
update message, and every acknowledgment message exchanged between
any pair of adjacent routers in the network is protected by an integrity check
added by the sending router. If an adversary inserts or modifies any OSPF
message between any pair of adjacent routers, then the inserted or modified
OSPF message will be detected and discarded by the first router that receives

104 Chapter 10

this message because the integrity check contained in this message is not
correct. Therefore, OSPF messages are secured by hop integrity and an
adversary cannot use inserted or modified OSPF messages to mess up link
state databases maintained by routers.

3.3 Security of RSVP

RSVP [4], which is shorthand of Reservation Protocol, is a resource
reservation protocol designed for providing integrated services in the
Internet. RSVP allows a host that wants to receive particular application data
flows from a sending host to request from the network a specific degree of
services in advance (although there is no guarantee that the requested service
is available in the network). RSVP also allows a router to exchange service
requests with other routers to establish and maintain state of the service it
provides. Once the requested service is established, the host that requested
the service is guaranteed that each router along the data path (between this
host and the sending host) has reserved needed resources for the service the
router promised to provide, and that the provided service will last till the end
of the transmission of the data flow.

There are two main types of messages used in RSVP, namely Resv and
Path messages. Each sending host periodically sends a Path message to all
receiving hosts for a data flow that this sending host generates. The Path
message is designed to mark the path that is traveled by data messages. Each
router along the data path maintains a state that remembers the previous
router corresponding to this particular data flow. With the path information
marked by Path messages, each receiving host is able to send Resv
messages, which contain the reservation requests, toward the sending host.
When receiving a Resv message, each router on the path determines how
many resources it can grant to this reservation request, and relays the Resv
message toward the sending host.

The security issues concerned with RSVP are the integrity and
authentication of service request messages. If an adversary spoofs the source
address of a service request message, and the service request message is
accepted by unsuspecting routers along the data path, then the adversary can
steal the established service. If an adversary modifies the parameter of
service specified in a service request message, or replays several service
request messages and inserts them into the network, the normal service
provided by the network may be severely reduced or totally denied.

An extension to RSVP [2] provides a mechanism to protect RSVP
messages against message modification, message spoofing, and message
replay. The proposed scheme uses a secret shared between a pair of adjacent
RSVP routers to compute a keyed cryptographic digest of a RSVP message,

Other Uses of Hop Integrity 105

and includes the digest as part of the RSVP message. However, a working
key management protocol is missing in that proposal and manual key
management may be necessary at its current stage.

By contrast, if strong hop integrity along with ingress filtering is
deployed in the network, then not only RSVP messages, but all other types
of messages will also be protected against message modification, message
spoofing, and message replay. Moreover, hop integrity is easier to manage
because it updates shared secrets in a distributed way (by each pair of
adjacent routers themselves).

4. SECURITY IN AD HOC NETWORKS AND
SENSOR NETWORKS

Ad hoc networks and sensor networks are two new types of networks that
have found many applications in today's world. Because of the ease and
flexibility in their deployment, these types of networks are widely used in
situations in which information exchange and/or aggregation is needed but
communication infrastructure is unavailable, for example battlegrounds,
disaster rescue sites, and construction sites.

There are two common characteristics of ad hoc networks and sensor
networks. First, the nodes in these networks communicate with each other
through wireless media. Therefore, no infrastructure is needed for the
deployment of these networks. Second, there is no dedicated router in these
networks. Instead, each node in these networks also plays the role of a
router, in that each node, when receiving a message not destined for it, will
forward the message to a neighboring node that is closer to the ultimate
destination.

However, the ad hoc nature of these types of networks also makes them
vulnerable to message insertion and message modification attacks as
follows. If an adversary inserts a new message between two neighboring
nodes, or arbitrarily modifies a message in transit, then the inserted or
modified message will be forwarded by unwitting nodes that receive this
message towards the ultimate destination.

To counter the aforementioned attacks, a variation of hop integrity can be
implemented in these types of networks as follows. Before the deployment,
each node in an ad hoc network or a sensor network is loaded with a group
secret that is only known to the nodes belonging to the network. If every
transmitted message is appended with a piece of integrity check information
computed using the group secret, then any inserted or modified message will
be detected and discarded by a node that receives the message next. The

106 Chapter 10

TinySec project conducted by Karlof et al. [3 11 also proposes a scheme that
is similar to hop integrity.

References

Atkins, D., et al., Internet Security, 2nd edition, New Riders, 1997.
Baker, F., B. Lindell, M. Talwar, "RSVP Cryptographic Authentication", RFC 2747,
January 2000.
Bellovin, S., M. Leech, T. Taylor, "ICMP Traceback Messages", Internet Draft, work in
progress, October 2001.
Braden, R., L. Zhang, S. Berson, S. Herzog, S. Jamin, "Resource Reservation Protocol
(RSVP) - Version 1 Functional Specification", RFC 2747, January 2000.
"TCP SYN Flooding and IP Spoofing Attacks", CERT Advisory CA-96.21, available at
http://www.cert.org/.
Cheung, S., "An Efficient Message Authentication Scheme for Link State Routing",
Proceedings of the 13th Annual Computer Security Applications Conference, San
Diego, California, December 1997, pp. 90-98.
Comer, D. E., Internetworking with TCPIIP: Vol. I: Principles, Protocols, and
Architecture, Prentice-Hall, Englewood Cliffs, NJ, 1988.
Carl-Mitchell, S., J. S. Quarterman, "Using ARP to Implement Transparent Subnet
Gateways", RFC 1027, October 1987.
Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997.

[lo] Deering, S., "Host Extensions for IP Multicasting", RFC 1054, May 1988.
[I 11 Estrin, D., D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C.

Liu, P. Sharma, L. Wei, "Protocol Independent Multicast-Sparse Mode (PIM-SM):
Protocol Specification", RFC 2362, June 1998.

[I21 Ferguson, P., D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks
which employ IP Source Address Spoofing", RFC 2827, May 2000.

[I31 Gouda, M. G., Elements of Network Protocol Design, John Wiley & Sons, New York,
NY, 1998.

[I41 Gouda, M. G., E. N. Elnozahy, C.-T. Huang, E. Jung, "An Overview of Hop Integrity",
Proceeding of 2001 IBM Austin Center for Advanced Studies Conference, 2001.

[15] Gouda, M. G., E. N. Elnozahy, C.-T. Huang, T. M. McGuire, "Hop Integrity in
Computer Networks", IEEEIACM Transactions on Networking, Vol. 10, No. 3, June
2002, pp. 308-3 19.

References

[16] Gouda, M. G., C.-T. Huang, "A Secure Address Resolution Protocol", Computer
Networks, Vol. 4 1, No. 1, January 2003, pp. 57-71.

[I71 Gouda, M. G., C.-T. Huang, E. Li, "Anti-Replay Window Protocols for Secure IP",
Proceedings of 9th International Conference on Computer Communications and
Networks, Las Vegas, October 2000.

[18] Hedrick, C., "Routing Information Protocol", RFC 1058, June 1988.
[19] Huang, C.-T., "Hop Integrity: A Defense against Denial-of-Service Attacks", Ph.D.

Dissertation, Department of Computer Sciences, The University of Texas at Austin,
August 2003.

[20] Huang, G., S. Beaulieu, D. Rochefort, "A Traffic-Based Method of Detecting Dead IKE
Peers", Internet Draft, draft-ietf-ipsec-dpd-01 .txt, August 2001.

[21] Huang, C.-T., E. N. Elnozahy, M. G. Gouda, "Hop Integrity and the Security of
Routing Protocols", Proceedings of 2002 IBM Austin Center for Advanced Studies
Conference, 2002.

[22] Huang, C.-T., M. G. Gouda, E. N. Elnozahy, "Convergence of IPsec in Presence of
Resets", Proceedings of 2nd International Workshop on Assurance in Distributed
Systems and Networks, Providence, May 2003.

[23] Hussain, A., J. Heidemann, C. Papadopoulos, "A Framework for Classifying Denial of
Service Attacks", Proceedings of SIGCOMM'03, Karlsruhe, Germany, August 2003.

[24] Joncheray, L., "A Simple Active Attack Against TCP", Proceedings of the 5th USENIX
UNIX Security Symposium, 1995, pp. 7-19.

[25] Ji, P., Z. Ge, J. Kurose, D. Towsley, "A Comparison of Hard-state and Soft-state
Signaling Protocols", Proceedings of SIGCOMM'03, Karlsruhe, Germany, August
2003.

[26] Kent, S., and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401,
November 1998.

[27] Kent, S., and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.
[28] Kent, S., and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406,

November 1998.
[29] Krawczyk, H., M. Bellare, R. Canetti, "HMAC: Keyed-Hashing for Message

Authentication", RFC 21 04, February 1997.
[30] Krywaniuk, A,, T. Kivinen, "Using Isakmp Heartbeats for Dead Peer Detection",

Internet Draft, draft-ietf-ipsec-heartbeats-01 .txt, July 2000.
[31] Karlof, C., N. Sastry, D. Wagner, "TinySec: A Link Layer Security Architecture for

Wireless Sensor Networks", Proceedings of SenSys704 Baltimore, November 2004.
[32] Network Research Group, Lawrence Berkeley National Laboratory, ARPWATCH 2.0,

available at: ftp://ftp.ee.lbl.gov/arpwatch.tar.Z.
[33] Malkin, G., "RIP Version 2: Carrying Additional Information", RFC 1723, November

1994.
[34] Montenegro, G., "Reverse Tunneling for Mobile IP", RFC 2344, May 1998.
[35] Montenegro, G., "Reverse Tunneling for Mobile IP, revised", RFC 3024, January 2001.
[36] Moy, J., "OSPF Version 2", RFC 1583, March 1994.
[37] Murphy, S., and M. Badger, "Digital Signature Protection of the OSPF Routing

Protocol", Proceedings of the 1996 Internet Society Symposium on Network and
Distributed Systems Security, San Diego, California, February 1996.

[38] Maughan, D., M. Schertler, M. Schneider, and J. Turner, "Internet Security Association
and Key Management Protocol (ISAKMP)", RFC 2408, November 1998.

[39] NIST, FIPS PUB 180- 1 : Secure Hash Standard, April 1995.
[40] Orman, H., "The OAKLEY Key Determination Protocol", RFC 2412, November 1998.

References

[41] Perkins, C., Ed., "IP Mobility Support for Ipv4", RFC 3220, January 2002.
[42] Plummer, D. C., "An Ethernet Address Resolution Protocol or Converting Network

Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet
Hardware", RFC 826, November 1982.

[43] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981.
[44] Rivest, R. L., "The MD5 Message-Digest Algorithm", RFC 1321, 1992.
[45] Skoudis, E., Counter Hack: A Step-by-step Guide to Computer Attacks and Efficient

Defenses, Prentice Hall PTR, 2001.
[46] Stevens, W. R., TCPIIP Illustrated, Vol. I: The Protocols, Prentice-Hall, Englewood

Cliffs, NJ, 1994.
[47] Smith, B., S. Murthy, and J. J. Garcia-Luna-Aceves, "Securing Distance Vector

Routing Protocols", Proceedings of the 1997 Internet Society Symposium on Network
and Distributed Systems Security, San Diego, California, February 1997.

[48] Snoeren, A,, C. Patridge, L. Sanchez, C. Jones, F. Tchakounito, S. Kent, W. Strayer,
"Hash-Based IP Traceback", Proceedings of ACM SIGCOMM'OI, San Diego,
California, August 2001.

[49] Savage, S., D. Wetherall, A. Karlin, and T. Anderson, "Network Support for IP
Traceback", IEEEJACM Transactions on Networking, Vol. 9, No. 3, June 2001.

[SO] The User-Mode Linux Kernel Home Page, http://user-mode-linux.sourceforge.net.
[51] De Vivo, M., G. de Vivo, and G. Isern, "Internet Security Attacks at the Basic Levels",

Operating Systems Review, Vol. 32, No. 2, SIGOPS, ACM, April 1998.
[52] Whalen, S., An Introduction to ARP Spoofing, April 2001,

http://chocobospore.org/arpspoof.
[53] Waitzman, D., C. Partridge, S. Deering, "Distance Vector Multicast Routing Protocol",

RFC 1075, November 1988.
[54] 2004 CSIIFBI Computer Crime and Security Survey, available at

http://i.cmpnet.com/gocsi/db~area~pdfs/fbi/FBI2004.pdf.

Index

action, 8-16, 18, 21
ad hoc networks, 93, 105
adversary, 1-6, 17-19,22,26-30,32-34,

38,40, 41,43,45-47, 57-59, 61-71,
73-79, 81, 87,90-92, 98,99, 101-105

authentication, 5,6, 102, 104

channel, 8, 11, 18, 23, 39, 40,45, 65,66,
71,73

constant, 8, 11

decryption, 18, 59, 90
denial-of-service attacks, 2, 4-6, 25,28,

29, 30, 93
communication-stopping attacks,

25
resource-exhausting attacks, 25

DHCP, 27

encryption, 18, 57, 59, 71, 90
Ethernet, 26-28, 31-35, 37,41, 48, 53,

54,90, 91

FETCH, 76, 78, 80-82, 86
first-in, first-out (FIFO), 8
foreign agent, 94,96
foreign subnetwork, 93,94
formal notation, 7

good cycle, 40,41,45,47, 61,62, 66,
73,74

good state, 40,41,45,47,61,62, 66, 73
guard, 8,9, 11,21

timeout, 21
local, 9, 11
receiving, 9, 11

HMAC, 20,108
hop, 1
hop integrity, 3-6,28, 30,93-106
host, 1,4,25,26,28-30, 35,64,71, 104

ingress filtering, 29,94, 95, 105
integrity check, 20,24,33, 34,40,46,

47, 56, 90,92,96,99, 102, 103, 105
Internet, 1,25,27,29,89,93,97, 102,

104
Internet Service Provider (ISP), 25
interval, 79-81
IP options, 92
IPsec, 5,86,108

key, 17-19,24, 57,59,90, 105
private, 19, 22-24, 56-59, 89
public, 19,22-24, 56-59, 89
shared. 19

leap number, 79,81-85

Index

MD5,20,90, 109
message, 1,7-8
message digest, 17,20-24, 33,35, 36,

39,40, 42,45-48, 63,64, 70,71,73,
90,92

message loss, 17,21, 22,40,41,46,47,
61, 62, 66,73, 74, 85

message modification, 4,6, 17,20,22,
30,40,41,46,47,55,61,62,63,66,
67, 73, 74, 104, 105

message replay, 4, 6, 17,21, 22,40, 41,
47, 55, 62, 67, 73, 74, 87, 104, 105

message snooping, 17,22
mobile IP, 93-97
multicast, 2,93, 97-100

network, 1
nonce, 17, 20-24, 34-36,42

overhead, 5, 79, 89, 90, 92

parameter, 14
parameterized actions, 14
persistent memory, 78, 81-84, 86
predicate, 12, 13, 39, 53, 60,66,68,73
process, 7
protocol, 7-15
protocol stack, 4, 55

application layer, 4,94
integrity check layer, 55, 56
key exchange layer, 55,56
network layer, 4, 5, 55
subnetwork layer, 4
transport layer, 4

reset, 75-86
reverse tunneling, 95-96
router, 1, 3-6,27,29,30, 33,41,55, 56,

62-65, 71, 74, 89,90,94-99, 101- 105

SAVE, 76,78-86
secret, 20, 22,23, 33-37,41,42,48, 55,

56-65, 67, 70-74, 89-91,99, 104, 105
Secret Exchange Protocol, 55-62,65,

67, 72, 74, 89, 90

Secure Address Resolution Protocol,
4, 31-47

secure key pair, 19,22
asymmetric, 19,22
symmetric, 19,95

secure routing, 5
sensor networks, 93, 105
sequence number, 67-71, 75-87, 89-92,

102
hard sequence number, 6,67,75-

87
soft sequence number, 6,67-71,

74-76, 86
SHA, 20
Smurf attack, 25,28,29
spanning tree, 97-100
state, 11-13
state transition diagram, 11-14,37,41,

44,46,47, 59,62,65, 66,71, 73, 89
statement, 8-10

assignment, 9
iteration, 9
selection, 9
send, 9
sequence, 10
skip, 9

Strong Hop Integrity Protocol, 4, 86
subnetwork, 1,3,4, 29, 30,41, 94
SYN attack, 25,28,29
synchronization, 68,69,74, 75,78,91,

103

timeout, 17,21-23,36, 39,43,46,49, 51,
52, 58, 61, 86, 89-91

traceback, 5
hash-based scheme, 5
message marking scheme, 5

unbounded, 8,77,90

variable, 8-13

Weak Hop Integrity Protocol, 4,55

zombie, 29

